已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Daily hotel demand forecasting with spatiotemporal features

需求预测 竞争对手分析 计算机科学 稳健性(进化) 供求关系 需求模式 运筹学 期限(时间) 环境经济学 需求管理 计量经济学 营销 业务 经济 微观经济学 生物化学 化学 物理 宏观经济学 量子力学 工程类 基因
作者
Liyao Huang,Cheng Li,Weimin Zheng
出处
期刊:International Journal of Contemporary Hospitality Management [Emerald Publishing Limited]
卷期号:35 (1): 26-45 被引量:13
标识
DOI:10.1108/ijchm-12-2021-1505
摘要

Purpose Given the importance of spatial effects in improving the accuracy of hotel demand forecasting, this study aims to introduce price and online rating, two critical factors influencing hotel demand, as external variables into the model, and capture the spatial and temporal correlation of hotel demand within the region. Design/methodology/approach For high practical implications, the authors conduct the case study in Xiamen, China, where the hotel industry is prosperous. Based on the daily demand data of 118 hotels before and during the COVID-19 period (from January to June 2019 and from January to June 2021), the authors evaluate the prediction performance of the proposed innovative model, that is, a deep learning-based model, incorporating graph convolutional networks (GCN) and gated recurrent units. Findings The proposed model simultaneously predicts the daily demand of multiple hotels. It effectively captures the spatial-temporal characteristics of hotel demand. In addition, the features, price and online rating of competing hotels can further improve predictive performance. Meanwhile, the robustness of the model is verified by comparing the forecasting results for different periods (during and before the COVID-19 period). Practical implications From a long-term management perspective, long-term observation of market competitors’ rankings and price changes can facilitate timely adjustment of corresponding management measures, especially attention to extremely critical factors affecting forecast demand, such as price. While from a short-term operational perspective, short-term demand forecasting can greatly improve hotel operational efficiency, such as optimizing resource allocation and dynamically adjusting prices. The proposed model not only achieves short-term demand forecasting, but also greatly improves the forecasting accuracy by considering factors related to competitors in the same region. Originality/value The originalities of the study are as follows. First, this study represents a pioneering attempt to incorporate demand, price and online rating of other hotels into the forecasting model. Second, integrated deep learning models based on GCN and gated recurrent unit complement existing predictive models using historical data in a methodological sense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白云垛发布了新的文献求助10
刚刚
十十完成签到,获得积分10
3秒前
4秒前
5秒前
小蘑菇应助Fxxkme采纳,获得10
8秒前
yydragen应助科研通管家采纳,获得40
8秒前
大模型应助科研通管家采纳,获得10
9秒前
鬼见愁应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
10秒前
10秒前
yuelsy0117完成签到,获得积分20
11秒前
恋雅颖月发布了新的文献求助10
13秒前
inwxy完成签到,获得积分10
14秒前
xch完成签到,获得积分10
14秒前
啾啾完成签到 ,获得积分10
17秒前
yx_cheng应助LLL采纳,获得20
20秒前
20秒前
黑糖珍珠完成签到 ,获得积分10
21秒前
23秒前
26秒前
天蓬元帅完成签到,获得积分10
27秒前
28秒前
LinYX完成签到,获得积分10
31秒前
31秒前
Fxxkme发布了新的文献求助10
32秒前
么么哒荼蘼酱完成签到,获得积分10
35秒前
白云垛完成签到,获得积分10
36秒前
RenS完成签到,获得积分10
36秒前
41秒前
8R60d8应助鲨鱼辣椒采纳,获得10
42秒前
滚雪球的Dr Gao完成签到 ,获得积分10
42秒前
44秒前
44秒前
我要做看片大王关注了科研通微信公众号
45秒前
风清扬发布了新的文献求助10
45秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117434
求助须知:如何正确求助?哪些是违规求助? 3655979
关于积分的说明 11576338
捐赠科研通 3358859
什么是DOI,文献DOI怎么找? 1845235
邀请新用户注册赠送积分活动 910699
科研通“疑难数据库(出版商)”最低求助积分说明 827047