Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments

全球导航卫星系统应用 计算机科学 激光雷达 惯性导航系统 卫星系统 实时计算 导航系统 全球导航卫星系统增强 遥感 测距 精密点定位 全球定位系统 方向(向量空间) 电信 地理 数学 几何学
作者
Shengyu Li,Shiwen Wang,Yuxuan Zhou,Zhiheng Shen,Xingxing Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24721-24735 被引量:41
标识
DOI:10.1109/jiot.2022.3194544
摘要

The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, the global navigation satellite system (GNSS) is recognized as an important approach for worldwide positioning services. However, its application is limited in urban areas due to severe signal attenuation, reflections, and blockages. Inertial navigation system (INS) can provide high-precision navigation outputs within a short period, but its accuracy suffers from error accumulation, especially when equipped with the low-cost microelectromechanical system (MEMS) inertial measurement units (IMUs). In addition, light detection and ranging (LiDAR) is becoming more common as an option in vehicles, which can detect rich geometric information in the environment for ego-motion estimation. Aiming at taking advantage of the complementary characteristics of these onboard technologies to navigate in urban environments, a tightly coupled multi-GNSS precise point positioning (PPP)/INS/LiDAR integrated system is proposed. We also develop an LiDAR sliding-window plane-feature tracking method to further improve navigation accuracy and computational efficiency. The performance of the proposed integrated system was evaluated in vehicular experiments with different GNSS observation conditions. Results indicate that our proposed GNSS/INS/LiDAR integration can maintain submeter level horizontal positioning accuracy in GNSS-challenging environments, with improvements of (73.3%, 59.7%, and 64.2%) compared to traditional GNSS/INS integration. Moreover, the plane-feature tracking method is proved to outperform traditional point-to-line and point-to-plane scan matching in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听说完成签到,获得积分10
1秒前
N1koooooo完成签到,获得积分10
1秒前
权志龙驳回了852应助
1秒前
1秒前
2秒前
直率的冰海完成签到,获得积分10
2秒前
小杨同学完成签到,获得积分10
2秒前
留无影完成签到,获得积分10
3秒前
半壶月色半边天完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
浮游应助苏大强采纳,获得10
4秒前
泥鳅面完成签到,获得积分10
4秒前
slim发布了新的文献求助10
4秒前
4秒前
5秒前
啊哦呃咦唔吁完成签到,获得积分10
5秒前
懒羊羊完成签到,获得积分10
5秒前
5秒前
科研通AI5应助Bo采纳,获得10
5秒前
怕黑的老九完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
6秒前
727263476完成签到,获得积分10
6秒前
陈木子完成签到,获得积分10
6秒前
研友_VZG7GZ应助PORCO采纳,获得10
6秒前
欣喜巧曼发布了新的文献求助10
6秒前
6秒前
cssfsa发布了新的文献求助30
6秒前
无花果应助小小学神采纳,获得10
7秒前
kqd发布了新的文献求助10
7秒前
核桃应助11采纳,获得40
7秒前
7秒前
留胡子的寄瑶完成签到,获得积分10
7秒前
7秒前
我还没准备好完成签到,获得积分10
8秒前
陈chq完成签到,获得积分10
8秒前
yq完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347