Analysis and prediction of the joint strength of friction stir welded Aluminium 5754 to polyamide using response surface methodology and artificial neural network

材料科学 极限抗拉强度 搅拌摩擦焊 响应面法 复合材料 焊接 抗剪强度(土壤) 结构工程 计算机科学 机器学习 环境科学 土壤科学 工程类 土壤水分
作者
SJ Adarsh,Arivazhagan Natarajan
出处
期刊:Journal of Thermoplastic Composite Materials [SAGE Publishing]
卷期号:: 089270572211330-089270572211330
标识
DOI:10.1177/08927057221133091
摘要

Lightweight hybrid structures are developing these days due to increased demand for fuel economy and lower emissions in the automotive and aerospace industries. This study aims to analyse and optimise the influence of friction stir welding (FSW) process parameters on the tensile shear strength of the aluminium-polyamide hybrid joint. The study on the influence of each parameter on the joint strength helps define the bonding mechanism while joining aluminium-polymer hybrid structures. Optical microscopy and scanning electron microscopy (SEM) were used for microstructural examination. A SEM image of the weld’s cross-sectional area shows micro and macro mechanical interlocks with a small interfacial gap which indicates better joint strength. An elemental area mapping investigation of the weld zone reveals fine polymer and aluminium mixing along the interaction region. In addition, FSW parameters have been optimized to maximize the tensile shear strength of aluminium-polyamide hybrid joints. A mathematical model for tensile shear strength in terms of FSW parameters is developed using response surface methodology (RSM). A predictive model was developed using an Artificial Neural Network (ANN) to validate RSM predicted results. The analysis of variance (ANOVA) shows that the actual and predicted values have a satisfactory correlation. ANN methods are better than regression models in predicting tensile shear strength within input welding parameter ranges. The process variables were optimised using the desirability function analysis. The maximum joint tensile shear strength of about 19.74 MPa and attained at optimal FSW parameters, i.e. rotational tool speed of 1421 r/min, welding speed of 27 mm/min, and tool tilt angle of 1°. The regression coefficient for the ANN model was 0.988 for the test data set, indicating that the developed model is appropriate for predicting tensile shear strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助ava采纳,获得10
1秒前
1秒前
Northharbor发布了新的文献求助10
1秒前
1秒前
kunkun发布了新的文献求助10
2秒前
麞欎发布了新的文献求助10
3秒前
小情绪应助水电站采纳,获得30
3秒前
4秒前
Yulin Yu发布了新的文献求助10
4秒前
李伟完成签到,获得积分20
5秒前
阿冲发布了新的文献求助10
6秒前
何同宇发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
冰汤圆完成签到,获得积分10
6秒前
6秒前
雪白鸿涛完成签到,获得积分10
6秒前
7秒前
是永是之发布了新的文献求助10
7秒前
成就山菡完成签到,获得积分10
7秒前
8秒前
快点毕业发布了新的文献求助10
8秒前
充电宝应助方姿采纳,获得10
8秒前
8秒前
骆驼牛子完成签到,获得积分10
9秒前
优秀小霜发布了新的文献求助10
9秒前
ding应助整齐泥猴桃采纳,获得10
9秒前
lq完成签到,获得积分20
9秒前
NexusExplorer应助rushfuture采纳,获得10
9秒前
9秒前
星辰大海应助Go采纳,获得10
10秒前
丘比特应助神仙没有草原采纳,获得10
11秒前
lyx2010完成签到,获得积分10
12秒前
12秒前
斯文败类应助小小卖碳翁采纳,获得10
12秒前
erhao完成签到,获得积分10
12秒前
yijiali完成签到,获得积分10
13秒前
李健的粉丝团团长应助lq采纳,获得10
13秒前
13秒前
tx完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476