Analysis and prediction of the joint strength of friction stir welded Aluminium 5754 to polyamide using response surface methodology and artificial neural network

材料科学 极限抗拉强度 搅拌摩擦焊 响应面法 复合材料 焊接 抗剪强度(土壤) 结构工程 计算机科学 机器学习 环境科学 土壤科学 工程类 土壤水分
作者
SJ Adarsh,Arivazhagan Natarajan
出处
期刊:Journal of Thermoplastic Composite Materials [SAGE Publishing]
卷期号:: 089270572211330-089270572211330
标识
DOI:10.1177/08927057221133091
摘要

Lightweight hybrid structures are developing these days due to increased demand for fuel economy and lower emissions in the automotive and aerospace industries. This study aims to analyse and optimise the influence of friction stir welding (FSW) process parameters on the tensile shear strength of the aluminium-polyamide hybrid joint. The study on the influence of each parameter on the joint strength helps define the bonding mechanism while joining aluminium-polymer hybrid structures. Optical microscopy and scanning electron microscopy (SEM) were used for microstructural examination. A SEM image of the weld’s cross-sectional area shows micro and macro mechanical interlocks with a small interfacial gap which indicates better joint strength. An elemental area mapping investigation of the weld zone reveals fine polymer and aluminium mixing along the interaction region. In addition, FSW parameters have been optimized to maximize the tensile shear strength of aluminium-polyamide hybrid joints. A mathematical model for tensile shear strength in terms of FSW parameters is developed using response surface methodology (RSM). A predictive model was developed using an Artificial Neural Network (ANN) to validate RSM predicted results. The analysis of variance (ANOVA) shows that the actual and predicted values have a satisfactory correlation. ANN methods are better than regression models in predicting tensile shear strength within input welding parameter ranges. The process variables were optimised using the desirability function analysis. The maximum joint tensile shear strength of about 19.74 MPa and attained at optimal FSW parameters, i.e. rotational tool speed of 1421 r/min, welding speed of 27 mm/min, and tool tilt angle of 1°. The regression coefficient for the ANN model was 0.988 for the test data set, indicating that the developed model is appropriate for predicting tensile shear strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Lucas应助dan1029采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
脑洞疼应助真实的安波采纳,获得10
2秒前
核桃发布了新的文献求助30
3秒前
科研小白爱科研完成签到,获得积分10
3秒前
3秒前
jm完成签到,获得积分10
4秒前
4秒前
4秒前
xxs完成签到,获得积分10
4秒前
科研通AI6应助俞璐采纳,获得10
5秒前
圆锥香蕉发布了新的文献求助20
5秒前
圆锥香蕉发布了新的文献求助20
5秒前
QinQin完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
圆锥香蕉发布了新的文献求助10
7秒前
圆锥香蕉发布了新的文献求助20
7秒前
圆锥香蕉发布了新的文献求助10
7秒前
圆锥香蕉发布了新的文献求助30
7秒前
圆锥香蕉发布了新的文献求助20
7秒前
圆锥香蕉发布了新的文献求助30
7秒前
圆锥香蕉发布了新的文献求助30
7秒前
7秒前
8秒前
赵坤煊完成签到 ,获得积分10
8秒前
小雨哥发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
aa发布了新的文献求助10
11秒前
13秒前
烟花应助xxxxxxu采纳,获得10
13秒前
14秒前
zsy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284895
求助须知:如何正确求助?哪些是违规求助? 3812324
关于积分的说明 11941642
捐赠科研通 3458832
什么是DOI,文献DOI怎么找? 1896958
邀请新用户注册赠送积分活动 945639
科研通“疑难数据库(出版商)”最低求助积分说明 849351