Comparison of preprocessing and machine learning methods for identifying writing inks using mid-infrared hyperspectral imaging and machine learning

高光谱成像 预处理器 计算机科学 红外线的 人工智能 遥感 模式识别(心理学) 机器学习 计算机视觉 光学 地质学 物理
作者
Shigeru Sugawara
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:127: 104357-104357 被引量:6
标识
DOI:10.1016/j.infrared.2022.104357
摘要

We compared preprocessing and machine learning methods for identifying writing inks on paper using mid-infrared hyperspectral imaging and machine learning. We collected training data by making a blackened circle on paper with a pen and measuring it using hyperspectral imaging. We attempted to identify five types of black ink that are difficult to identify using visible and near-infrared spectroscopy and can only be identified using mid-infrared spectroscopy. We initially analyzed the spectra using principal component analysis, and used the scores as a substitute for the spectrum. As an overall trend, standardization of the data for each variable had little effect on improving the discrimination rate. By contrast, using the difference spectrum from the average spectrum of the paper was effective for improving the discrimination rate. The discrimination rate was higher for the second-order derivative than for the spectrum itself, and for the first-order derivative than for the second-order derivative. Furthermore, the combination of the three had the highest discrimination rate. We tested three supervised machine learning methods: decision trees, discriminant analysis, and k-nearest neighbors. The highest classification accuracy (97.6%) was obtained for second-order discriminant analysis. Considering the discrimination rate and learning time, second-order discriminant analysis was the best method. For the measurement data of a sample with blackened circles using all the writing inks, this method identified the different inks quite well. For the measurement data of crossed line samples, using the proposed method, we clearly identified each ink. At the intersection of two lines, the line written later was detected more strongly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
星辰大海应助叶子采纳,获得10
2秒前
高兴的无颜完成签到,获得积分20
2秒前
3秒前
hdc12138发布了新的文献求助10
3秒前
Kristal发布了新的文献求助10
3秒前
4秒前
所所应助白色采纳,获得10
5秒前
栗心完成签到,获得积分10
5秒前
5秒前
WangZY发布了新的文献求助50
6秒前
123456发布了新的文献求助20
6秒前
善学以致用应助Jirobai采纳,获得10
6秒前
1911988020发布了新的文献求助10
7秒前
童童完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
天天快乐应助泰裤辣采纳,获得10
8秒前
8秒前
orixero应助YZ采纳,获得10
8秒前
9秒前
MINGXING发布了新的文献求助10
9秒前
9秒前
Lucas应助SHADY592采纳,获得10
9秒前
酷波er应助lily采纳,获得10
9秒前
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
橙子完成签到,获得积分10
14秒前
菠萝贝完成签到,获得积分10
15秒前
穆梦山发布了新的文献求助10
15秒前
蜗牛完成签到,获得积分10
15秒前
共享精神应助失眠耳机采纳,获得10
16秒前
16秒前
lbx发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649271
求助须知:如何正确求助?哪些是违规求助? 4777760
关于积分的说明 15047338
捐赠科研通 4808206
什么是DOI,文献DOI怎么找? 2571314
邀请新用户注册赠送积分活动 1527861
关于科研通互助平台的介绍 1486716