Dynamic Adaptive Dynamic Window Approach

计算机科学 窗口(计算) 人工智能 控制工程 控制理论(社会学) 工程类 操作系统 控制(管理)
作者
Matej Dobrevski,Danijel Skočaj
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 3068-3081 被引量:30
标识
DOI:10.1109/tro.2024.3400932
摘要

Robust local navigation is a critical capability for any mobile robot operating in a real-world, unstructured environment, especially when there are humans or other moving obstacles in the workspace. One of the most commonly used methods for local navigation is the Dynamic Window Approach (DWA), which does not address the problem of dynamic obstacles and depends heavily on the settings of the parameters in its cost function. Thus, it is a static approach that does not adapt to the characteristics of the environment, which can change significantly. On the other hand, data-driven deep learning approaches attempt to adapt to the characteristics of the environment by predicting the appropriate robot motion based on the current observation. However, they cannot guarantee collision-free trajectories for unseen inputs. In this work, we combine the best of both worlds. We propose a neural network to predict the weights of the DWA, which is then used for safe local navigation. To address the problem of dynamic obstacles the proposed method considers a short sequence of observations to allow the network to model the motion of the obstacles and adjust the DWA weights accordingly. The network is trained using the Proximal Policy Optimization (PPO) in a reinforcement learning setting in a simulated dynamic environment. We perform a comprehensive evaluation of the proposed approach in realistic scenarios using range scans of real 3D spaces and show that it outperforms both DWA and purely Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
warithy完成签到,获得积分10
1秒前
自然的诗翠完成签到,获得积分10
1秒前
光亮的思天完成签到,获得积分10
1秒前
chai完成签到,获得积分10
1秒前
2秒前
2秒前
香蕉觅云应助引子采纳,获得10
2秒前
哇owao完成签到,获得积分10
2秒前
爆米花应助Chow采纳,获得10
2秒前
2秒前
lamb完成签到 ,获得积分10
3秒前
科研通AI2S应助张张采纳,获得10
3秒前
科研通AI2S应助张张采纳,获得10
3秒前
庭树完成签到,获得积分10
3秒前
肖承祥完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
妖哥完成签到,获得积分10
4秒前
科研通AI6应助Liam采纳,获得10
4秒前
无私的采文关注了科研通微信公众号
5秒前
毛岳伦发布了新的文献求助10
5秒前
5秒前
包包完成签到,获得积分10
5秒前
dudu发布了新的文献求助10
5秒前
从容完成签到,获得积分10
6秒前
6秒前
6秒前
巴哒完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
张张完成签到,获得积分10
7秒前
雪白半鬼完成签到,获得积分10
8秒前
田様应助carly采纳,获得10
8秒前
zlf发布了新的文献求助10
8秒前
斯文败类应助Z1采纳,获得10
8秒前
希望天下0贩的0应助DWRH采纳,获得10
8秒前
wxa完成签到,获得积分10
9秒前
黑大侠完成签到 ,获得积分0
9秒前
单纯的乐曲完成签到,获得积分10
9秒前
9秒前
da关注了科研通微信公众号
10秒前
搞怪过客完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671950
求助须知:如何正确求助?哪些是违规求助? 4923605
关于积分的说明 15137852
捐赠科研通 4830850
什么是DOI,文献DOI怎么找? 2587424
邀请新用户注册赠送积分活动 1541072
关于科研通互助平台的介绍 1499451