已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dielectric Characterization and Machine Learning-Based Predictions in Polymer Composites with Mixed Nanoparticles

电介质 复合材料 材料科学 纳米颗粒 表征(材料科学) 聚合物 纳米技术 光电子学
作者
Parvathanani Rajendra Kumar,B Madhav Rao,Chaitanya Kishore Reddy Maddireddy,Sanketsinh Thakor,Chandan R. Vaja,Krishna Prakash,Prince Jain
出处
期刊:Journal of Macromolecular Science, Part B [Taylor & Francis]
卷期号:: 1-15 被引量:5
标识
DOI:10.1080/00222348.2024.2372522
摘要

Our research described in this manuscript investigated the dielectric properties and structural characteristics of Bisphenol-A epoxy resin composites infused with various concentrations (5 wt.%, 10 wt.%, and 15 wt.%) of hybrid nanofillers, namely alumina (Al2O3) and zinc oxide (ZnO). Ultrasonic dispersion was utilized to integrate the nanofillers into the resin matrix. Structural properties were assessed using X-ray diffraction (XRD), which confirmed the presence of the Al2O3 and ZnO nanoparticles within the epoxy matrix. Dielectric properties were measured over a frequency range of 104 Hz to 2 MHz. The results provide new insights into the polarization mechanisms and structural characteristics of these composites, highlighting their potential for enhanced dielectric performance in high-frequency applications. To further understand and predict these dielectric properties, the CatBoost and LightGBM regression models were employed to predict the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity (σac) of these composites. The models demonstrated strong predictive accuracy, with performance metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2), indicating the robustness and accuracy of the models in predicting the dielectric properties of the composites. The study's findings underscore the significant potential of Bisphenol-A epoxy resin composites with hybrid nanofillers for high-frequency dielectric applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿咿呀呀发布了新的文献求助10
1秒前
魁梧的小笼包完成签到,获得积分20
2秒前
科研通AI5应助vicky采纳,获得10
3秒前
爱撒娇的沛凝完成签到 ,获得积分10
3秒前
4秒前
Liu完成签到 ,获得积分10
4秒前
子阅完成签到 ,获得积分10
7秒前
坦率的电源完成签到,获得积分10
7秒前
enmnm发布了新的文献求助10
8秒前
10秒前
我好想睡完成签到,获得积分10
13秒前
残幻应助kiki采纳,获得10
13秒前
秋天完成签到,获得积分20
14秒前
15秒前
16秒前
DreamRunner0410完成签到 ,获得积分10
17秒前
17秒前
路过发布了新的文献求助10
17秒前
天天快乐应助YYYhl采纳,获得10
18秒前
19秒前
19秒前
CornellRong发布了新的文献求助10
21秒前
Yy123发布了新的文献求助10
23秒前
hh发布了新的文献求助10
23秒前
LB发布了新的文献求助10
25秒前
上官若男应助林声采纳,获得10
25秒前
周心雨发布了新的文献求助10
26秒前
YifanWang完成签到,获得积分0
27秒前
wstkkkkykk完成签到 ,获得积分10
28秒前
yingpengyu完成签到,获得积分10
28秒前
30秒前
SolderOH完成签到,获得积分10
31秒前
32秒前
32秒前
耍酷代柔完成签到,获得积分10
33秒前
Yy123完成签到,获得积分10
34秒前
34秒前
guo完成签到 ,获得积分10
35秒前
36秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477