已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DCNeT: A disease comorbidity network-based temporal deep learning framework to predict cardiovascular risk in patients with mental disorders

共病 计算机科学 疾病 机器学习 人工智能 深度学习 数据挖掘 医学 精神科 内科学
作者
Hang Qiu,Ping Yang,Liya Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:254: 124312-124312 被引量:1
标识
DOI:10.1016/j.eswa.2024.124312
摘要

Patients with mental disorders (MDs) are at higher subsequent risk of developing cardiovascular diseases (CVDs) than the general population. Early identification of cardiovascular risk in patients with MDs is beneficial for timely intervention and reducing disease burden. Recently, deep learning approaches have been increasingly applied in CVDs risk prediction. However, these methods have three major issues: 1) mostly relying on multiple types of clinical data, 2) not sufficiently mining and utilizing comorbidity patterns hidden in complex correlations among various diseases, and 3) not fully leveraging the time information, including the irregular intervals. To address these issues, we propose a disease comorbidity network-based temporal deep learning framework (DCNeT) to predict the subsequent CVDs risk for patients with MDs based on routinely collected administrative health data. Firstly, to identify the comorbidity patterns of MDs, we construct a disease comorbidity network (DCN) for MDs and apply graph embedding method to generate disease embeddings for each disease in the DCN. Then, a code attention mechanism is proposed to obtain the weight of each disease which is embedded into dense vectors based on the structure of DCN. We present a view attention mechanism to compute the attention weights of different types of features including disease embeddings, basic features, and disease indicators for generating the final representations of patients' hospitalizations. Furthermore, to fully utilize the information on the irregular time intervals between hospitalizations, a time encoding module is designed, and the time-aware LSTM is adopted to model the irregular time intervals and capture the temporal patterns of patients' hospitalizations. The experimental results show that DCNeT outperforms the state-of-the-art methods, with the area under the receiver operating characteristic curve of 0.7658, 0.8143, 0.8110, and 0.7839 on four datasets, respectively. The ablation experiments further demonstrate that each module of DCNeT, including the code attention, view attention, and time encoding module, contributes to its superior performance, with average improvements of 1.20 %, 1.65 %, and 1.13 % in accuracy, respectively. Our DCNeT could be utilized as an efficient framework for identifying high-risk groups of CVDs among patients with MDs that may benefit from screening and preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助QIQI采纳,获得10
1秒前
4秒前
买着雨关注了科研通微信公众号
5秒前
6秒前
日月发布了新的文献求助10
8秒前
9秒前
melo完成签到,获得积分10
10秒前
hezhuyou发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
CodeCraft应助平常雨泽采纳,获得10
14秒前
14秒前
夢loey发布了新的文献求助10
14秒前
阿旭完成签到 ,获得积分10
15秒前
虚幻的醉柳完成签到,获得积分20
16秒前
bbdan发布了新的文献求助10
17秒前
sobergod完成签到 ,获得积分10
18秒前
洪汉发布了新的文献求助10
19秒前
甜美雪兰发布了新的文献求助10
19秒前
20秒前
21秒前
能干的鞅发布了新的文献求助10
21秒前
21秒前
22秒前
岳小龙发布了新的文献求助10
22秒前
猪猪hero应助bbdan采纳,获得10
22秒前
科研助手6应助bbdan采纳,获得10
22秒前
科研助手6应助bbdan采纳,获得10
22秒前
洪汉完成签到,获得积分0
25秒前
悦耳的子默完成签到 ,获得积分10
25秒前
jokeyoonic发布了新的文献求助10
25秒前
25秒前
CY发布了新的文献求助30
26秒前
平常雨泽发布了新的文献求助10
26秒前
搜集达人应助甜美雪兰采纳,获得10
27秒前
专注的沛山关注了科研通微信公众号
28秒前
28秒前
dm发布了新的文献求助10
28秒前
锦鲤完成签到 ,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815407
求助须知:如何正确求助?哪些是违规求助? 3359175
关于积分的说明 10400609
捐赠科研通 3076830
什么是DOI,文献DOI怎么找? 1690026
邀请新用户注册赠送积分活动 813577
科研通“疑难数据库(出版商)”最低求助积分说明 767674