城市热岛
土地覆盖
封面(代数)
环境科学
土地利用
环境资源管理
环境规划
地理
气象学
工程类
土木工程
机械工程
作者
Omar Y. Mohamed,Izni Zahidi
出处
期刊:urban climate
[Elsevier BV]
日期:2024-05-01
卷期号:55: 101976-101976
被引量:5
标识
DOI:10.1016/j.uclim.2024.101976
摘要
Rocketing global urbanisation has caused an increase in the Urban Heat Island (UHI) effect, resulting in various negative implications for the urban environment. Quantifying the Surface UHI (SUHI) effect using Land Surface Temperature (LST), Local Climate Zones (LCZ), and deep learning algorithms such as Convolutional Neural Networks (CNN) and pix2pix have prospects in aiding sustainable city planning and modification. Most research on mitigating SUHI promotes greenery as a solution, allowing LCZ optimisation to be explored. Using Heat Vulnerability Index (HVI) and evolutionary algorithms like Genetic Algorithms (GA) and Particle Swarm Optimisation (PSO) show promise in achieving high-quality optimisation solutions. This short communication explores the potential of these artificial intelligence technologies to combat the UHI effect and enhance urban sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI