Image Augmentation based on Variational Autoencoder for Breast Tumor Segmentation

计算机科学 分割 人工智能 自编码 模式识别(心理学) 编码器 图像分割 乳腺摄影术 乳房磁振造影 医学影像学 深度学习 计算机视觉 乳腺癌 癌症 医学 操作系统 内科学
作者
K.C. Balaji
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S172-S183 被引量:7
标识
DOI:10.1016/j.acra.2022.12.035
摘要

Breast tumor segmentation based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging is significant step for computable radiomics analysis of breast cancer. Manual tumor annotation is time-consuming process and involves medical acquaintance, biased, inclined to error, and inter-user discrepancy. A number of modern trainings have revealed the capability of deep learning representations in image segmentation.Here, we describe a 3D Connected-UNets for tumor segmentation from 3D Magnetic Resonance Imagings based on encoder-decoder architecture. Due to a restricted training dataset size, a variational auto-encoder outlet is supplementary to renovate the input image itself in order to identify the shared decoder and execute additional controls on its layers. Based on initial segmentation of Connected-UNets, fully connected 3D provisional unsystematic domain is used to enhance segmentation outcomes by discovering 2D neighbor areas and 3D volume statistics. Moreover, 3D connected modules evaluation is used to endure around large modules and decrease segmentation noise.The proposed method has been assessed on two widely offered datasets, explicitly INbreast and the curated breast imaging subset of digital database for screening mammography The proposed model has also been estimated using a private dataset.The experimental results show that the proposed model outperforms the state-of-the-art methods for breast tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
z0发布了新的文献求助10
刚刚
CipherSage应助毓桦采纳,获得10
1秒前
1秒前
潘半青完成签到,获得积分10
2秒前
心尚发布了新的文献求助10
3秒前
薄荷也完成签到,获得积分10
3秒前
陈昭琼发布了新的文献求助10
3秒前
风汐5423发布了新的文献求助10
3秒前
hxx完成签到,获得积分10
3秒前
Woo完成签到,获得积分10
5秒前
hejunhui发布了新的文献求助10
7秒前
JZ发布了新的文献求助10
7秒前
yolo发布了新的文献求助10
8秒前
Vincent发布了新的文献求助10
11秒前
12秒前
napnap完成签到 ,获得积分10
13秒前
hiccup发布了新的文献求助10
13秒前
13秒前
夏侯觅风完成签到,获得积分10
13秒前
13秒前
方法完成签到,获得积分10
14秒前
无限西装完成签到,获得积分10
15秒前
18秒前
hhhblabla应助陌陌采纳,获得20
19秒前
19秒前
20秒前
21秒前
wb完成签到 ,获得积分10
21秒前
岚叶应助JZ采纳,获得10
21秒前
aaaaa发布了新的文献求助10
22秒前
22秒前
Jasper应助大鱼采纳,获得10
23秒前
文艺鞋子发布了新的文献求助10
23秒前
hiccup完成签到,获得积分10
24秒前
bbb发布了新的文献求助10
25秒前
隐形曼青应助学不完了采纳,获得10
26秒前
Cloud发布了新的文献求助10
26秒前
JiangnanYuan发布了新的文献求助10
26秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066053
求助须知:如何正确求助?哪些是违规求助? 3604736
关于积分的说明 11448246
捐赠科研通 3327101
什么是DOI,文献DOI怎么找? 1829030
邀请新用户注册赠送积分活动 899118
科研通“疑难数据库(出版商)”最低求助积分说明 819449