Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation

计算机科学 编码器 变压器 卷积神经网络 人工智能 分割 深度学习 图像分割 模式识别(心理学) 计算机视觉 电压 量子力学 操作系统 物理
作者
Hu Cao,Yueyue Wang,Joy Chen,Dongsheng Jiang,Xiaopeng Zhang,Qi Tian,Manning Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 205-218 被引量:1457
标识
DOI:10.1007/978-3-031-25066-8_9
摘要

In the past few years, convolutional neural networks (CNNs) have achieved milestones in medical image analysis. In particular, deep neural networks based on U-shaped architecture and skip-connections have been widely applied in various medical image tasks. However, although CNN has achieved excellent performance, it cannot learn global semantic information interaction well due to the locality of convolution operation. In this paper, we propose Swin-Unet, which is an Unet-like pure Transformer for medical image segmentation. The tokenized image patches are fed into the Transformer-based U-shaped Encoder-Decoder architecture with skip-connections for local-global semantic feature learning. Specifically, we use a hierarchical Swin Transformer with shifted windows as the encoder to extract context features. And a symmetric Swin Transformer-based decoder with a patch expanding layer is designed to perform the up-sampling operation to restore the spatial resolution of the feature maps. Under the direct down-sampling and up-sampling of the inputs and outputs by $$4{\times }$$ , experiments on multi-organ and cardiac segmentation tasks demonstrate that the pure Transformer-based U-shaped Encoder-Decoder network outperforms those methods with full-convolution or the combination of transformer and convolution. The codes have been publicly available at the link ( https://github.com/HuCaoFighting/Swin-Unet ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐正映萱发布了新的文献求助10
3秒前
bofu完成签到,获得积分10
4秒前
syhero完成签到,获得积分10
4秒前
小飞完成签到,获得积分10
4秒前
4秒前
forever发布了新的文献求助10
5秒前
6秒前
bofu发布了新的文献求助10
6秒前
6秒前
小飞发布了新的文献求助10
7秒前
完美世界应助hlx年少采纳,获得10
8秒前
无限鲜花发布了新的文献求助10
9秒前
Sherry完成签到,获得积分10
9秒前
luo完成签到,获得积分10
10秒前
田田发布了新的文献求助10
11秒前
bofu发布了新的文献求助10
12秒前
所所应助未来化学家采纳,获得10
13秒前
13秒前
14秒前
16秒前
17秒前
bofu发布了新的文献求助10
19秒前
vvv完成签到 ,获得积分10
19秒前
清明发布了新的文献求助10
19秒前
爆米花应助坚强丹雪采纳,获得10
20秒前
金枪鱼子发布了新的文献求助10
22秒前
如意若冰发布了新的文献求助10
22秒前
23秒前
卡卡西应助空禅yew采纳,获得60
24秒前
25秒前
bofu发布了新的文献求助10
25秒前
feng1235完成签到,获得积分10
26秒前
斯塔克发布了新的文献求助10
26秒前
hlx年少发布了新的文献求助10
27秒前
28秒前
dede发布了新的文献求助10
30秒前
砰砰发布了新的文献求助10
31秒前
坚强丹雪发布了新的文献求助10
32秒前
bofu发布了新的文献求助10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354915
关于积分的说明 10373474
捐赠科研通 3071449
什么是DOI,文献DOI怎么找? 1686979
邀请新用户注册赠送积分活动 811316
科研通“疑难数据库(出版商)”最低求助积分说明 766596