Category Knowledge-Guided Parameter Calibration for Few-Shot Object Detection

计算机科学 人工智能 杠杆(统计) 分类器(UML) 目标检测 模式识别(心理学) 感兴趣区域 上下文图像分类 计算机视觉 机器学习 图像(数学)
作者
Chaofan Chen,Xiaoshan Yang,Jinpeng Zhang,Bo Dong,Changsheng Xu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1092-1107 被引量:8
标识
DOI:10.1109/tip.2023.3239197
摘要

Few-shot object detection (FSOD) aims to adapt generic detectors to the novel categories with only a few annotations, which is an important and realistic task. Although the generic object detection has been widely studied over the past years, the FSOD is under explored. In this paper, we propose a novel Category Knowledge-guided Parameter Calibration (CKPC) framework to solve the FSOD task. We first propagate the category relation information to explore the representative category knowledge. Then, we explore the RoI-RoI and RoI-Category relations to capture the local-global context information to enhance the RoI (Region of Interest) features. Next, we project the knowledge representations of foreground categories into a parameter space by a linear transformation to generate the parameters of the category-level classifier. For the background, we learn a proxy category by concluding the global characteristics of all foreground categories to help ensure the discrepancy between the foreground and background, which is then projected into the parameter space by the same linear transformation. Finally, we leverage the parameters of the category-level classifier to explicitly calibrate the instance-level classifier learned on the enhanced RoI features for both the foreground and background categories to improve the detection performance. We conduct extensive experiments on two popular FSOD benchmarks (i.e., Pascal VOC and MS COCO), and the experimental results show that the proposed framework can outperform state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ma完成签到,获得积分10
1秒前
4秒前
yliaoyou完成签到,获得积分10
6秒前
温暖的涵易应助NN采纳,获得30
9秒前
黄辉冯完成签到,获得积分10
12秒前
脑洞疼应助wlei采纳,获得10
13秒前
gambling完成签到 ,获得积分20
14秒前
scm完成签到,获得积分10
18秒前
科研通AI5应助小纯牛奶采纳,获得10
19秒前
热心市民完成签到,获得积分0
19秒前
Wudifairy完成签到,获得积分10
19秒前
21秒前
吃紫薯的鱼完成签到,获得积分10
23秒前
25秒前
YOY发布了新的文献求助10
25秒前
711moiii完成签到,获得积分10
25秒前
26秒前
隐形曼青应助黄石采纳,获得10
28秒前
陈JY完成签到 ,获得积分10
28秒前
科研通AI5应助ljs采纳,获得10
29秒前
HEAUBOOK应助峡星牙采纳,获得30
29秒前
啊啊啊发布了新的文献求助10
29秒前
wlei发布了新的文献求助10
31秒前
31秒前
芦荟板蓝根完成签到,获得积分10
36秒前
36秒前
37秒前
Holly完成签到,获得积分10
38秒前
阳光的初瑶完成签到,获得积分20
42秒前
Ling完成签到,获得积分10
43秒前
44秒前
大尾巴鱼完成签到,获得积分10
46秒前
47秒前
绿绿发布了新的文献求助10
49秒前
52秒前
CGBY完成签到 ,获得积分10
53秒前
55秒前
lzk完成签到,获得积分10
55秒前
小纯牛奶完成签到,获得积分10
59秒前
热心乌完成签到,获得积分0
1分钟前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445