Nanotechnology and machine learning enable circulating tumor cells as a reliable biomarker for radiotherapy responses of gastrointestinal cancer patients

循环肿瘤细胞 放射治疗 液体活检 医学 生物标志物 胃肠道癌 癌症 肿瘤科 内科学 外周血单个核细胞 活检 病理 结直肠癌 转移 生物 体外 生物化学
作者
Michael J. Poellmann,Jiyoon Bu,Stanley K. Liu,Andrew Z. Wang,Steven N. Seyedin,Chandrikha Chandrasekharan,Heejoo Hong,Young Soo Kim,Joseph M. Caster,Seungpyo Hong
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:226: 115117-115117 被引量:12
标识
DOI:10.1016/j.bios.2023.115117
摘要

A highly sensitive, circulating tumor cell (CTC)-based liquid biopsy was used to monitor gastrointestinal cancer patients during treatment to determine if CTC abundance was predictive of disease recurrence. The approach used a combination of biomimetic cell rolling on recombinant E-selectin and dendrimer-mediated multivalent immunocapture at the nanoscale to purify CTCs from peripheral blood mononuclear cells. Due to the exceptionally high numbers of CTCs captured, a machine learning algorithm approach was developed to efficiently and reliably quantify abundance of immunocytochemically-labeled cells. A convolutional neural network and logistic regression model achieved 82.9% true-positive identification of CTCs with a false positive rate below 0.1% on a validation set. The approach was then used to quantify CTC abundance in peripheral blood samples from 27 subjects before, during, and following treatments. Samples drawn from the patients either prior to receiving radiotherapy or early in chemotherapy had a median 50 CTC ml-1 whole blood (range 0.6-541.6). We found that the CTC counts drawn 3 months post treatment were predictive of disease progression (p = .045). This approach to quantifying CTC abundance may be a clinically impactful in the timely determination of gastrointestinal cancer progression or response to treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
what发布了新的文献求助10
4秒前
leolee完成签到,获得积分10
6秒前
6秒前
10秒前
rye227应助DD47采纳,获得20
11秒前
SCI发布了新的文献求助10
12秒前
莎莉完成签到,获得积分10
14秒前
Felix完成签到,获得积分10
15秒前
情怀应助曾淋采纳,获得10
16秒前
jeonghan完成签到 ,获得积分10
16秒前
LOVER完成签到 ,获得积分10
17秒前
共享精神应助落后醉易采纳,获得10
18秒前
19秒前
大模型应助清风明月采纳,获得10
20秒前
22秒前
111发布了新的文献求助10
22秒前
kelaibing完成签到,获得积分10
22秒前
pluto应助温暖砖头采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得30
25秒前
科目三应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得30
25秒前
我是老大应助科研通管家采纳,获得10
26秒前
zmnzmnzmn应助科研通管家采纳,获得10
26秒前
lynn应助科研通管家采纳,获得40
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
yumeng完成签到,获得积分10
26秒前
尧九应助科研通管家采纳,获得10
26秒前
ding应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
ddd777发布了新的文献求助10
28秒前
脑洞疼应助是小明啦采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339