Machine‐Learning‐Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes

纳米技术 纳米材料 生化工程 计算机科学 材料科学 工程类
作者
Jie Zhuang,Adam C. Midgley,Yonghua Wei,Qiqi Liu,Deling Kong,Xinglu Huang
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (10) 被引量:122
标识
DOI:10.1002/adma.202210848
摘要

Abstract Nanozymes are nanomaterials that exhibit enzyme‐like biomimicry. In combination with intrinsic characteristics of nanomaterials, nanozymes have broad applicability in materials science, chemical engineering, bioengineering, biochemistry, and disease theranostics. Recently, the heterogeneity of published results has highlighted the complexity and diversity of nanozymes in terms of consistency of catalytic capacity. Machine learning (ML) shows promising potential for discovering new materials, yet it remains challenging for the design of new nanozymes based on ML approaches. Alternatively, ML is employed to promote optimization of intelligent design and application of catalytic materials and engineered enzymes. Incorporation of the successful ML algorithms used in the intelligent design of catalytic materials and engineered enzymes can concomitantly facilitate the guided development of next‐generation nanozymes with desirable properties. Here, recent progress in ML, its utilization in the design of catalytic materials and enzymes, and how emergent ML applications serve as promising strategies to circumvent challenges associated with time‐expensive and laborious testing in nanozyme research and development are summarized. The potential applications of successful examples of ML‐aided catalytic materials and engineered enzymes in nanozyme design are also highlighted, with special focus on the unified aims in enhancing design and recapitulation of substrate selectivity and catalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
IvenChou发布了新的文献求助10
1秒前
3秒前
4秒前
5秒前
栀子菜发布了新的文献求助10
5秒前
鱼鱼鱼完成签到,获得积分10
5秒前
一年半太久只争朝夕完成签到,获得积分10
6秒前
Bai发布了新的文献求助10
7秒前
小园饼干完成签到,获得积分10
7秒前
简单怡应助傻傻的一刀采纳,获得20
8秒前
9秒前
9秒前
9秒前
小园饼干发布了新的文献求助10
10秒前
IvenChou完成签到,获得积分10
10秒前
Lucas应助无奈的眼神采纳,获得10
10秒前
优雅老六发布了新的文献求助10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
16秒前
优雅老六完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
星辰大海应助热心映容采纳,获得10
19秒前
20秒前
20秒前
科研通AI6.1应助笑对人生采纳,获得10
21秒前
CBY完成签到,获得积分10
21秒前
犹豫代曼完成签到,获得积分10
22秒前
23秒前
23秒前
乔木木发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
开放储完成签到,获得积分10
27秒前
27秒前
科目三应助小如要努力采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752