Interpretable research on the health monitoring network of prefabricated building beam–column joints

栏(排版) 结构健康监测 结构工程 梁(结构) 建筑工程 工程类 计算机科学 建筑工程 连接(主束)
作者
Wei Kang,Dongsheng Li,Xingyu Li,Yue Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251316329
摘要

As neural network models increasingly apply in structural health monitoring (SHM), their strong data processing and generalization abilities have been demonstrated in damage identification, localization, performance prediction, and early warning. Consequently, enhancing model interpretability and addressing the “black-box” nature to improve user trust have become key research priorities. To address these challenges, this study initially establishes a single-layer assembled steel frame structure, where accelerometer signals from four positions on beam components are acquired through controlled small hammer impact tests conducted under 10 damage conditions at the beam–column joints. Subsequent to data collection, a health monitoring model is devised that leverages one-dimensional convolutional neural networks that are trained to effectively discriminate between accelerometer signals under the 10 damage conditions while exhibiting robustness against varying noise levels. To shed light on the network’s decision-making process, gradient-weighted class activation mapping (Grad-CAM) is employed to elucidate the network’s degree of attention to different parts of the input data during the learning phase. Furthermore, the input signals were decomposed into single-modal subsequences through singular spectrum analysis, with Grad-CAM heatmaps illustrating the attention distribution within these subsequences, thereby visualizing the network’s learning process. Finally, a comparative analysis was conducted between the proposed visualized neural network model and traditional spectral analysis methods in terms of their advantages and limitations for classifying SHM signals. The study revealed the inherent periodicity of the structural vibration acceleration signals and identified the model’s periodic high-activation behavior during classification. This indicates that the model is capable of automatically recognizing the internal periodic patterns of the signals, thereby enhancing its credibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色发布了新的文献求助10
1秒前
学不完了发布了新的文献求助10
2秒前
跳跃的世开完成签到,获得积分10
2秒前
Byron完成签到,获得积分10
2秒前
cdercder应助宝宝言兼采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
蓝色发布了新的文献求助10
10秒前
郭达仲完成签到 ,获得积分10
10秒前
十七完成签到 ,获得积分10
11秒前
斯文远望完成签到,获得积分10
18秒前
myqj发布了新的文献求助10
18秒前
123456hhh完成签到,获得积分10
19秒前
19秒前
科研通AI5应助彩色草莓采纳,获得10
20秒前
20秒前
怡然小蚂蚁完成签到 ,获得积分10
21秒前
21秒前
周LL发布了新的文献求助10
24秒前
李爱国应助刘璇采纳,获得10
25秒前
zl完成签到,获得积分10
25秒前
27秒前
2041完成签到,获得积分10
29秒前
淡然宛凝完成签到 ,获得积分10
30秒前
噔噔蹬完成签到 ,获得积分10
31秒前
shenghaowen完成签到,获得积分10
32秒前
33秒前
科研通AI2S应助学不完了采纳,获得10
35秒前
35秒前
我爱写论文完成签到,获得积分10
37秒前
planA完成签到,获得积分10
38秒前
ZDY完成签到,获得积分10
38秒前
蓝色发布了新的文献求助30
39秒前
39秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445