重症监护室
回顾性队列研究
医学
队列
单位(环理论)
急诊医学
计算机科学
重症监护医学
数据库
内科学
数学
数学教育
作者
Zaixin Yu,Lexin Fang,Yueping Ding
标识
DOI:10.1186/s40001-025-02622-3
摘要
The explainable ML models based on various artificial intelligence methods demonstrated promising clinical applicability in predicting 28-day mortality risk among immunocompromised ICU patients. Factors such as urine output, BUN, metastatic solid tumors, CCI, and INR significantly contributed to prediction outcomes and may serve as important predictors in clinical practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI