Enhancing the Protein Stability of an Anticancer VHH‐Fc Heavy Chain Antibody through Computational Modeling and Variant Design

融合蛋白 抗体 生物信息学 融合 化学 免疫球蛋白轻链 二硫键 计算生物学 生物物理学 重组DNA 生物 生物化学 免疫学 语言学 基因 哲学
作者
Yuan Fang,Menghua Song,Tianlei Pu,Xiaoqing Song,Kangwei Xu,Pengcheng Shen,Ting Cao,Yiman Zhao,Simon Hsu,Dongmei Han,Qiang Huang
出处
期刊:Advanced Science [Wiley]
卷期号:12 (23): e2500004-e2500004 被引量:1
标识
DOI:10.1002/advs.202500004
摘要

Abstract VHHs (also known as nanobodies) are important therapeutic antibodies. To prolong their half‐life in bloodstream, VHHs are usually fused to the Fc fragment of full‐length antibodies. However, stability is often the main challenge for their commercialization, and methods to improve stability are still lacking. Here, an in silico pipeline is developed for analyzing the stability of an anticancer VHH‐Fc fusion antibody (VFA01) and designing its stable variants. Computational modeling is used to analyze the VFA01 structure and evaluate its conformational stability, disulfide bond reduction state, and aggregation and degradation tendency. By building mechanistic models of aggregation and degradation, the hotspot residues affecting stability: C130, F57, Y106, L120, and W111 are identified. Based on them, a series of VFA01 variants are designed and obtained a variant M11 (C130S/W111F/F57K) whose stability is significantly enhanced compared to VFA01: there are no visible particles in solution, and the change rate of DLS average hydrodynamic size, SEC HMW%, and CE‐SDS purity are improved by 6.2‐, 3.4‐, and 1.5‐fold, respectively. Both antigen‐binding activity and production yield are also improved by about 1.5‐fold. The results show that our computational pipeline is a very promising approach for improving the protein stability of therapeutic VHH‐Fc fusion antibodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
蓝天应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
榛子酱发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
辅助但上分完成签到,获得积分20
2秒前
3秒前
3秒前
yxl发布了新的文献求助10
4秒前
4秒前
一杯半茶发布了新的文献求助10
4秒前
炙热芷蕊发布了新的文献求助10
6秒前
秦摆烂完成签到,获得积分10
6秒前
顾矜应助123456采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
dnmd发布了新的文献求助10
8秒前
9秒前
好好学习完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233