材料科学
电子设备和系统的热管理
热的
形态学(生物学)
钻石
接口(物质)
散热膏
金属
纳米技术
复合材料
化学工程
工程物理
冶金
机械工程
热导率
热力学
工程类
物理
毛细管作用
生物
遗传学
毛细管数
作者
Xingye Wang,Yandong Wang,Bin Yang,Yingying Guo,Kang Xu,Zhenbang Zhang,Rongjie Yang,Jianxiang Zhang,Boda Zhu,Yue Qin,Yiwei Zhou,Linhong Li,Maohua Li,Tao Cai,Kazuhito Nishimura,Cheng‐Te Lin,Nan Jiang,Wen Dai,Jinhong Yu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-05-29
卷期号:19 (22): 20956-20969
被引量:10
标识
DOI:10.1021/acsnano.5c03918
摘要
With the exponential growth of AI computing power, the power density of electronic devices has exceeded 1 kW/cm2, rendering traditional thermal management materials insufficient to handle the challenges of high heat flux density. Developing thermal interface materials (TIMs) with both high thermal conductivity (≥10 W m-1 K-1) and interface compatibility is crucial. This study introduces a dual-level interface engineering strategy, constructing a thermally conductive adhesive layer with low interfacial thermal resistance (4 K mm2 W-1) and excellent electrical insulation properties (2.25 × 1013 Ω cm) through the incorporation of liquid metal (LM) microspheres (average particle size: 6.4 μm) and micron-sized diamond blending. By combining shear-induced in situ formation of a nanoscale gallium oxide interfacial layer with gradient rotational speed control, a three-dimensional continuous thermal conductive network composite material was successfully fabricated, achieving an ultrahigh thermal conductivity of 237.9 W m-1 K-1. The "sandwich" packaging structure effectively mitigates the risk of LM leakage. When applied to high-power devices, the surface temperature of the heat source decreases by up to 69% compared to without TIMs. Further development of the through-plane heat transfer and in-plane waste heat conversion device allows the conversion of waste heat into a stable voltage output of 7.35 V. This marks the successful transition of TIMs from heat dissipation to energy regeneration functionality. This study presents material solution for high-power electronic thermal management and advances the practical application of LM composite materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI