Biodegradable natural polymers are receiving increasing attention as potential candidates for wound dressing. In the present study, composite microspheres (mCSB) based on calcium alginate (CA), silk fibroin peptide (SP), and Bletilla striata polysaccharide (BSP) were prepared by the reverse emulsion method. The excellent swelling properties of microspheres enable them to rapidly promote thrombosis. Microspheres can increase the platelet aggregation index to 1.5 and the aggregation rate of red blood cells to as high as 80 %. Furthermore, tannic acid (TA)-loaded microspheres demonstrate a slow-release effect on TA; this allows the microspheres to exhibit good long-lasting antibacterial properties. Due to the synergistic effects of SP and TA, the cell senescence was delayed, with a 126.69 % survival rate of fibroblasts after 3 days of incubation. In addition, TA led to a rapid reduction in inflammation levels, with a wound closure rate of >92.80 % within 7 days. The multifunctional TA-loaded mCSB has great application potential for rapid wound healing and the treatment of wound hemostasis.