Towards Accurate Post-Training Quantization of Vision Transformers via Error Reduction

人工智能 计算机视觉 计算机科学 量化(信号处理) 模式识别(心理学)
作者
Yunshan Zhong,Huang You,Jiawei Hu,Yuxin Zhang,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3528042
摘要

Post-training quantization (PTQ) for vision transformers (ViTs) has received increasing attention from both academic and industrial communities due to its minimal data needs and high time efficiency. However, many current methods fail to account for the complex interactions between quantized weights and activations, resulting in significant quantization errors and suboptimal performance. This paper presents ERQ, an innovative two-step PTQ method specifically crafted to reduce quantization errors arising from activation and weight quantization sequentially. The first step, Activation quantization error reduction (Aqer), first applies Reparameterization Initialization aimed at mitigating initial quantization errors in high-variance activations. Then, it further mitigates the errors by formulating a Ridge Regression problem, which updates the weights maintained at full-precision using a closed-form solution. The second step, Weight quantization error reduction (Wqer), first applies Dual Uniform Quantization to handle weights with numerous outliers, which arise from adjustments made during Reparameterization Initialization, thereby reducing initial weight quantization errors. Then, it employs an iterative approach to further tackle the errors. In each iteration, it adopts Rounding Refinement that uses an empirically derived, efficient proxy to refine the rounding directions of quantized weights, complemented by a Ridge Regression solver to reduce the errors. Comprehensive experimental results demonstrate ERQ's superior performance across various ViTs variants and tasks. For example, ERQ surpasses the state-of-the-art GPTQ by a notable 36.81% in accuracy for W3A4 ViT-S. Our codes are available at https://github.com/zysxmu/ERQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼梦寒发布了新的文献求助10
刚刚
shirelylee完成签到,获得积分10
刚刚
hbhbj完成签到,获得积分10
刚刚
自由行天完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
CC应助简单山水采纳,获得10
2秒前
2秒前
lizibelle完成签到,获得积分10
3秒前
3秒前
4秒前
Epiphany发布了新的文献求助10
4秒前
无花果应助人心采纳,获得10
4秒前
5秒前
不倦发布了新的文献求助10
6秒前
canian完成签到,获得积分10
7秒前
8秒前
9秒前
Passerby发布了新的文献求助10
9秒前
笨笨无色发布了新的文献求助30
9秒前
bkagyin应助榴莲姑娘采纳,获得10
10秒前
犹豫的棒棒糖完成签到,获得积分10
11秒前
11秒前
丁鹏笑完成签到 ,获得积分0
12秒前
9320发布了新的文献求助50
12秒前
坎坎坷坷完成签到,获得积分10
12秒前
低调的涵内完成签到 ,获得积分10
12秒前
12秒前
Vincent完成签到,获得积分10
13秒前
13秒前
14秒前
ideal完成签到,获得积分10
14秒前
justonce发布了新的文献求助10
15秒前
15秒前
15秒前
晏啊发布了新的文献求助10
18秒前
大模型应助乐悠小胖采纳,获得10
18秒前
风中凡白发布了新的文献求助10
18秒前
善良飞雪发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514964
求助须知:如何正确求助?哪些是违规求助? 4608586
关于积分的说明 14512171
捐赠科研通 4544721
什么是DOI,文献DOI怎么找? 2490227
邀请新用户注册赠送积分活动 1472100
关于科研通互助平台的介绍 1443871