清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep unsupervised clustering for prostate auto-segmentation with and without hydrogel spacer

聚类分析 分割 计算机科学 人工智能 模式识别(心理学)
作者
Hengrui Zhao,Biling Wang,Michael Dohopolski,Ti Bai,Steve Jiang,Dan Nguyen
出处
期刊:Machine learning: science and technology [IOP Publishing]
标识
DOI:10.1088/2632-2153/ada8f3
摘要

Abstract Introduction: Clinical datasets for training deep learning (DL) models often exhibit high levels of heterogeneity due to differences such as patient characteristics, new medical techniques, and physician preferences. In recent years, hydrogel spacers have been used in some prostate cancer patients receiving radiotherapy to separate the prostate and the rectum to better spare the rectum while achieving adequate dose coverage on the prostate. However, this substantially affects the CT image appearance, which downstream reduced the contouring accuracy of auto-segmentation algorithms. This leads to highly heterogeneous dataset. 
Methods: To address this issue, we propose to identify underlying clusters within the dataset and use the cluster labels for segmentation. We collected a clinical dataset of 909 patients, including those with two types of hydrogel spacers and those without. First, we trained a DL model to locate the prostate and limit our field of view to the local area surrounding the prostate and rectum. We then used Uniform Manifold Approximation and Projection (UMAP) for dimensionality reduction and employed k-means clustering to assign each patient to a cluster. To leverage this clustered data, we propose a text-guided segmentation model, CLIP-UNet, which encodes the cluster information using a text encoder and combines the encoded text information with image features for segmentation. 
Results: The UMAP results indicated up to three clusters within the dataset. CLIP-UNet with cluster information achieved a Dice score of 86.2% compared to 84.4% from the baseline UNet. Additionally, CLIP-UNet outperforms other state-of-the-art models with or without cluster information. 
Conclusion: Automatic clustering assisted by deep learning can reveal hidden data clusters in clinical datasets, and CLIP-UNet effectively utilizes clustered labels and achieves higher performance. 
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Axs发布了新的文献求助200
2秒前
Axs完成签到,获得积分10
29秒前
tutu完成签到,获得积分10
49秒前
高熵君完成签到,获得积分10
1分钟前
田様应助开心远山采纳,获得10
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
1分钟前
AmyHu完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助150
4分钟前
4分钟前
未来可期完成签到 ,获得积分10
4分钟前
彩虹儿应助ceeray23采纳,获得20
4分钟前
JamesPei应助王先森采纳,获得10
4分钟前
4分钟前
Ava应助孙立军采纳,获得10
5分钟前
5分钟前
王先森发布了新的文献求助10
5分钟前
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
hwj524发布了新的文献求助10
6分钟前
优秀棒棒糖完成签到 ,获得积分10
6分钟前
斯文败类应助33采纳,获得10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
hwj524完成签到,获得积分10
6分钟前
2386完成签到,获得积分10
7分钟前
amanda完成签到 ,获得积分10
7分钟前
7分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
33发布了新的文献求助10
7分钟前
Akim应助33采纳,获得10
7分钟前
慕青应助科研通管家采纳,获得10
7分钟前
天天快乐应助Sylvia卉采纳,获得10
8分钟前
9分钟前
浮游应助Koala04采纳,获得10
9分钟前
Sylvia卉发布了新的文献求助10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844888
求助须知:如何正确求助?哪些是违规求助? 4145037
关于积分的说明 12833908
捐赠科研通 3891770
什么是DOI,文献DOI怎么找? 2139275
邀请新用户注册赠送积分活动 1159291
关于科研通互助平台的介绍 1059850