DC-Mamba: A Novel Network for Enhanced Remote Sensing Change Detection in Difficult Cases

遥感 变更检测 计算机科学 环境科学 地理
作者
Junyi Zhang,Renwen Chen,Fei Liu,Hao Liu,Boyu Zheng,Chenyu Hu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (22): 4186-4186 被引量:12
标识
DOI:10.3390/rs16224186
摘要

Remote sensing change detection (RSCD) aims to utilize paired temporal remote sensing images to detect surface changes in the same area. Traditional CNN-based methods are limited by the size of the receptive field, making it difficult to capture the global features of remote sensing images. In contrast, Transformer-based methods address this issue with their powerful modeling capabilities. However, applying the Transformer architecture to image processing introduces a quadratic complexity problem, significantly increasing computational costs. Recently, the Mamba architecture based on state-space models has gained widespread application in the field of RSCD due to its excellent global feature extraction capabilities and linear complexity characteristics. Nevertheless, existing Mamba-based methods lack optimization for complex change areas, making it easy to lose shallow features or local features, which leads to poor performance on challenging detection cases and high-difficulty datasets. In this paper, we propose a Mamba-based RSCD network for difficult cases (DC-Mamba), which effectively improves the model’s detection capability in complex change areas. Specifically, we introduce the edge-feature enhancement (EFE) block and the dual-flow state-space (DFSS) block, which enhance the details of change edges and local features while maintaining the model’s global feature extraction capability. We propose a dynamic loss function to address the issue of sample imbalance, giving more attention to difficult samples during training. Extensive experiments on three change detection datasets demonstrate that our proposed DC-Mamba outperforms existing state-of-the-art methods overall and exhibits significant performance improvements in detecting difficult cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deniroming完成签到,获得积分10
1秒前
1秒前
1秒前
1111111完成签到,获得积分10
2秒前
英俊的铭应助陈文娜采纳,获得10
2秒前
2秒前
小韬完成签到,获得积分10
2秒前
hml发布了新的文献求助10
2秒前
Shine发布了新的文献求助10
3秒前
DY完成签到,获得积分0
3秒前
3秒前
4秒前
4秒前
4秒前
jie结发布了新的文献求助10
4秒前
5秒前
dierda完成签到,获得积分10
5秒前
东方元语发布了新的文献求助10
5秒前
zhubin发布了新的文献求助10
5秒前
5秒前
hygge完成签到 ,获得积分10
5秒前
6秒前
三三四发布了新的文献求助10
6秒前
任驰骋发布了新的文献求助10
6秒前
slm3097688537发布了新的文献求助20
7秒前
pluto应助LL采纳,获得10
7秒前
将子昆发布了新的文献求助10
7秒前
7秒前
沉默夜云完成签到,获得积分10
8秒前
huahua发布了新的文献求助10
8秒前
陈七七完成签到,获得积分10
8秒前
李园长发布了新的文献求助10
8秒前
Jared应助李雨泽采纳,获得10
8秒前
思源应助帅气蓝采纳,获得10
8秒前
wyt发布了新的文献求助10
8秒前
junhuihe发布了新的文献求助10
8秒前
dierda发布了新的文献求助10
8秒前
8秒前
paipai完成签到,获得积分10
9秒前
fabea完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010