Joint ensemble learning-based risk prediction of Alzheimer's disease among mild cognitive impairment patients

认知障碍 接头(建筑物) 集成学习 疾病 关节病 认知 人工智能 医学 心理学 机器学习 计算机科学 内科学 精神科 工程类 病理 建筑工程 替代医学 骨关节炎
作者
Tianyuan Guan,Lei Shang,Peng Yang,Zhijun Tan,Zhaoyu Li,Chunling Dong,Xueying Li,Zhongwen Hu,Haixia Su,Yuhai Zhang
出处
期刊:JPAD [Springer Science+Business Media]
卷期号:: 100083-100083
标识
DOI:10.1016/j.tjpad.2025.100083
摘要

Due to the recognition for the importance of early intervention in Alzheimer's disease (AD), it is important to focus on prevention and treatment strategies for mild cognitive impairment (MCI). This study aimed to establish a risk prediction model for AD among MCI patients to provide clinical guidance for primary medical institutions. Data from MCI subjects were obtained from the NACC. Importance ranking and the SHapley Additive exPlanations (SHAP) method for the Random Survival Forest (RSF) and Extreme Gradient Boosting (XGBoost) algorithms in ensemble learning were adopted to select the predictors, and hierarchical clustering analysis was used to mitigate multicollinearity. The RSF, XGBoost and Cox proportional hazard regression (Cox) models were established to predict the risk of AD among MCI patients. Additionally, the effects of the three models were evaluated. A total of 3674 subjects with MCI were included. Thirteen predictors were ultimately identified. In the validation set, the concordance indices were 0.781 (RSF), 0.781 (XGBoost), and 0.798 (Cox), and the Integrated Brier Score was 0.087 (Cox). The prediction effects of the XGBoost and RSF models were not better than those of the Cox model. The ensemble learning method can effectively select predictors of AD risk among MCI subjects. The Cox proportional hazards regression model could be used in primary medical institutions to rapidly screen for the risk of AD among MCI patients once the model is fully clinically validated. The predictors were easy to explain and obtain, and the prediction of AD was accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ani完成签到,获得积分10
1秒前
小鱼马完成签到,获得积分10
2秒前
zpf完成签到,获得积分10
2秒前
3秒前
kiko完成签到,获得积分10
3秒前
3秒前
科研通AI5应助炙热的又夏采纳,获得10
3秒前
杨。。完成签到 ,获得积分10
4秒前
123456发布了新的文献求助10
4秒前
shisong发布了新的文献求助10
4秒前
kll9797应助文件撤销了驳回
5秒前
杨没差发布了新的文献求助10
5秒前
英俊的铭应助pxptmac采纳,获得10
5秒前
6秒前
Hollow完成签到,获得积分10
6秒前
rio发布了新的文献求助10
6秒前
FashionBoy应助刘二狗采纳,获得10
6秒前
Rogevexx发布了新的文献求助10
7秒前
科研通AI5应助Carlito采纳,获得30
8秒前
wendy完成签到,获得积分10
9秒前
蓝月发布了新的文献求助10
10秒前
小常发布了新的文献求助10
10秒前
11秒前
脑洞疼应助aaaale采纳,获得10
11秒前
cuiyy发布了新的文献求助50
12秒前
123完成签到,获得积分10
14秒前
Bethune124完成签到 ,获得积分10
14秒前
14秒前
芽芽豆完成签到 ,获得积分10
15秒前
orixero应助beiyangtidu采纳,获得10
15秒前
15秒前
16秒前
每天都要开心完成签到,获得积分10
16秒前
17秒前
我好想睡完成签到,获得积分10
17秒前
17秒前
翻翻完成签到,获得积分10
18秒前
LSS发布了新的文献求助20
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817577
求助须知:如何正确求助?哪些是违规求助? 3360882
关于积分的说明 10410010
捐赠科研通 3078935
什么是DOI,文献DOI怎么找? 1690894
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065