Autonomous LLM-Driven Research — from Data to Human-Verifiable Research Papers

可验证秘密共享 人类研究 研究数据 计算机科学 数据科学 心理学 认知科学 数据整理 程序设计语言 集合(抽象数据类型)
作者
Tal Ifargan,Lukas Hafner,M. L. Kern,Ori Alcalay,Roy Kishony
标识
DOI:10.1056/aioa2400555
摘要

BackgroundArtificial intelligence (AI) promises to accelerate scientific discovery, but it remains unclear whether AI systems can perform fully autonomous research, and whether they can do so while adhering to key scientific values, such as transparency, traceability, and verifiability. The aim of this study was to develop and evaluate an AI-automation platform that performs transparent, traceable, and human-verifiable scientific research.MethodsTo mimic human scientific practices, we built "data-to-paper," an automation platform that guides interacting large language model (LLM) agents through a complete stepwise research process that starts with annotated data and results in comprehensive research papers, while programmatically backtracing information flow and allowing human oversight and interactions. The platform can run fully autonomously (in autopilot mode) or with human intervention (in copilot mode).ResultsIn autopilot mode, provided only with annotated data, data-to-paper raised hypotheses; designed research plans; wrote and debugged analysis codes; generated and interpreted results; and created complete, information-traceable research papers. Even though the research novelty of manuscripts created by data-to-paper was relatively limited, the process demonstrated the autonomous generation of de novo quantitative insights from data, such as unraveling associations between health indicators and clinical outcomes. For simple research goals and datasets, a fully autonomous cycle can create manuscripts that independently recapitulate the findings of peer-reviewed biomedical publications without major errors in about 80 to 90% of cases. Yet, as goal or data complexity increases, human copiloting becomes critical for ensuring accuracy and overall quality. By tracking information flow through the steps, the platform creates "data-chained" manuscripts, in which downstream results are programmatically linked to upstream code and data, thus setting a new standard for the verifiability of scientific outputs.ConclusionsOur work demonstrates the potential for AI-driven acceleration of scientific discovery in data-driven biomedical research and beyond, while enhancing, rather than jeopardizing, traceability, transparency, and verifiability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到 ,获得积分10
3秒前
Jasper应助Misea采纳,获得10
3秒前
大个应助yn采纳,获得30
4秒前
JACK完成签到,获得积分10
4秒前
悠悠完成签到 ,获得积分10
7秒前
12秒前
啦啦啦完成签到,获得积分10
16秒前
Owen应助虚幻的城采纳,获得10
16秒前
显赫一世发布了新的文献求助10
17秒前
显赫一世完成签到,获得积分10
24秒前
笨笨芯应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
pluto应助科研通管家采纳,获得20
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
27秒前
高贵灭男完成签到,获得积分10
28秒前
shunshun51213完成签到,获得积分10
32秒前
酷波er应助bqss采纳,获得10
36秒前
坚定的海露完成签到,获得积分10
36秒前
汉堡包应助蒸有妮的采纳,获得10
36秒前
环走鱼尾纹完成签到 ,获得积分10
37秒前
瀛瀛完成签到 ,获得积分10
41秒前
Wai完成签到 ,获得积分10
43秒前
烟花应助乐橙采纳,获得10
47秒前
ying完成签到,获得积分10
47秒前
彻底完成签到,获得积分10
53秒前
55秒前
多发论文完成签到,获得积分20
56秒前
优秀藏鸟发布了新的文献求助30
1分钟前
syiimo完成签到 ,获得积分10
1分钟前
1分钟前
一口橙子完成签到 ,获得积分10
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
QhL完成签到,获得积分10
1分钟前
Misea发布了新的文献求助10
1分钟前
tailand完成签到,获得积分20
1分钟前
今后应助AA采纳,获得10
1分钟前
HEAUBOOK应助xyf采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535