Fine‐tuning of artificial intelligence managers' logic in a supply chain with competing retailers

供应链 产业组织 业务 供应链管理 计算机科学 链条(单位) 运筹学 人工智能 营销 数学 物理 天文
作者
Yue Li,Ruiqing Zhao,Xiang Li,Tsan‐Ming Choi
出处
期刊:Decision Sciences [Wiley]
标识
DOI:10.1111/deci.12657
摘要

Abstract Today, with the advance of artificial intelligence, companies in the real world are using AI as managers to make operational decisions, who can respond quickly to market shocks and whose logic can be fine‐tuned to programmed pessimism/optimism, that is, underestimating/overestimating the market. The introduction of AI managers poses new challenges to supply chain management, and how to manage AI managers warrants further exploration. We investigate the optimal AI manager fine‐tuning strategies in a supply chain consisting of one manufacturer and two competing retailers, each operated by an AI manager in the face of an uncertain market shock. We establish the manufacturer–retailer AI manager fine‐tuning game, where the manufacturer and two retailers endogenously decide whether to fine‐tune their AI managers' logic. The market may suffer an uncertain shock, and once the shock occurs, the AI managers' logic settings and price decisions can be quickly adjusted. We find that the manufacturer would never fine‐tune the AI manager, while the retailers may fine‐tune their AI managers to programmed optimism. Notably, AI manager's fine‐tunability only benefits the retailers and harms the manufacturer, entire supply chain, consumers, and social welfare. To make AI manager's fine‐tunability beneficial to all participants, that is, to reach a win–win–win situation, we design two incentive mechanisms, retailer pessimism incentive mechanism and mutual pessimism incentive mechanism (MPIM), where MPIM can lead to the win–win–win situation. Further, we endogenize the compensation, endogenous retailer pessimism compensation and endogenous mutual pessimism compensation, both achieving the win–win–win outcome. We also make several extensions and provide suggestions for supply chain firms to fine‐tune their AI managers' logic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyou完成签到,获得积分10
刚刚
1秒前
2秒前
酷波er应助逃亡的小狗采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
敖江风云完成签到,获得积分10
7秒前
7秒前
乔乔兔发布了新的文献求助10
7秒前
SSS完成签到,获得积分10
8秒前
猫七发布了新的文献求助10
9秒前
9秒前
YORLAN发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助Bob采纳,获得10
10秒前
12秒前
12秒前
12秒前
14秒前
猫七完成签到,获得积分10
14秒前
14秒前
scienceljk发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助乔乔兔采纳,获得10
15秒前
zz发布了新的文献求助10
15秒前
15秒前
16秒前
ww发布了新的文献求助10
16秒前
舟舟发布了新的文献求助10
16秒前
棋子一小枚完成签到,获得积分10
16秒前
17秒前
17秒前
Tyj发布了新的文献求助10
18秒前
18秒前
一人一般发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842477
求助须知:如何正确求助?哪些是违规求助? 3384535
关于积分的说明 10535634
捐赠科研通 3105077
什么是DOI,文献DOI怎么找? 1709969
邀请新用户注册赠送积分活动 823458
科研通“疑难数据库(出版商)”最低求助积分说明 774086