Joint Convolutional and Self-Attention Network for Occluded Person Re-Identification

计算机科学 人工智能 编码 卷积神经网络 特征提取 编码器 卷积(计算机科学) 特征(语言学) 计算机视觉 模式识别(心理学) 人工神经网络 生物化学 化学 语言学 哲学 基因 操作系统
作者
Chuxia Yang,Wanshu Fan,Dongsheng Zhou,Qiang Zhang
标识
DOI:10.1109/msn57253.2022.00123
摘要

Occluded person Re-Identification (Re-ID) is built on cross views, which aims to retrieve a target person in occlusion scenes. Under the condition that occlusion leads to the interference of other objects and the loss of personal information, the efficient extraction of personal feature representation is crucial to the recognition accuracy of the system. Most of the existing methods solve this problem by designing various deep networks, which are called convolutional neural networks (CNN)-based methods. Although these methods have the powerful ability to mine local features, they may fail to capture features containing global information due to the limitation of the gaussian distribution property of convolution operation. Recently, methods based on Vision Transformer (ViT) have been successfully employed to person Re-ID task and achieved good performance. However, since ViT-based methods lack the capability of extracting local information from person images, the generated results may severely lose local details. To address these deficiencies, we design a convolution and self-attention aggregation network (CSNet) by combining the advantages of both CNN and ViT. The proposed CSNet consists of three parts. First, to better capture personal information, we adopt Dual-Branch Encoder (DBE) to encode person images. Then, we also embed a Local Information Aggregation Module (LIAM) in the feature map, which effectively leverages the useful information in the local feature map. Finally, a Multi-Head Global-to-Local Attention (MHGLA) module is designed to transmit global information to local features. Experimental results demonstrate the superiority of the proposed method compared with the state-of-the-art (SOTA) methods on both the occluded person Re-ID datasets and the holistic person Re-ID datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hk1900发布了新的文献求助20
刚刚
1秒前
orixero应助cookie486采纳,获得30
1秒前
1秒前
2秒前
小v1212完成签到,获得积分20
2秒前
zby发布了新的文献求助10
4秒前
xentertain发布了新的文献求助10
4秒前
zhs发布了新的文献求助10
4秒前
Linden_bd完成签到 ,获得积分10
4秒前
科研通AI5应助365采纳,获得30
4秒前
大侦探皮卡丘完成签到,获得积分10
6秒前
skycrygg521完成签到,获得积分10
6秒前
6秒前
完美世界应助老迟到的秋采纳,获得10
7秒前
8秒前
8秒前
cookie486完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
本味完成签到,获得积分20
9秒前
大俊哥完成签到,获得积分10
9秒前
9秒前
蒸汽波波发布了新的文献求助10
12秒前
DrZ发布了新的文献求助200
12秒前
Mm完成签到,获得积分10
13秒前
KK发布了新的文献求助10
13秒前
cookie486发布了新的文献求助30
13秒前
柯云完成签到,获得积分10
14秒前
科研通AI5应助昌笑白采纳,获得10
14秒前
14秒前
Robe发布了新的文献求助10
15秒前
SYLH应助玉米采纳,获得30
15秒前
科研通AI5应助365采纳,获得10
15秒前
词语完成签到,获得积分10
15秒前
Xiaoxiao应助风趣以云采纳,获得10
16秒前
清脆的乌冬面完成签到,获得积分10
16秒前
zby完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785574
求助须知:如何正确求助?哪些是违规求助? 3331057
关于积分的说明 10249840
捐赠科研通 3046463
什么是DOI,文献DOI怎么找? 1672081
邀请新用户注册赠送积分活动 800976
科研通“疑难数据库(出版商)”最低求助积分说明 759907