Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment

医学 人体测量学 代谢综合征 肥胖 风险评估 老年学 人口 环境卫生 星团(航天器) 危险分层 内科学 计算机安全 计算机科学 程序设计语言
作者
Norbert Stefan,Matthias B. Schulze
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:11 (6): 426-440 被引量:153
标识
DOI:10.1016/s2213-8587(23)00086-4
摘要

Among 20 leading global risk factors for years of life lost in 2040, reference forecasts point to three metabolic risks—high blood pressure, high BMI, and high fasting plasma glucose—as being the top risk variables. Building upon these and other risk factors, the concept of metabolic health is attracting much attention in the scientific community. It focuses on the aggregation of important risk factors, which allows the identification of subphenotypes, such as people with metabolically unhealthy normal weight or metabolically healthy obesity, who strongly differ in their risk of cardiometabolic diseases. Since 2018, studies that used anthropometrics, metabolic characteristics, and genetics in the setting of cluster analyses proposed novel metabolic subphenotypes among patients at high risk (eg, those with diabetes). The crucial point now is whether these subphenotyping strategies are superior to established cardiometabolic risk stratification methods regarding the prediction, prevention, and treatment of cardiometabolic diseases. In this Review, we carefully address this point and conclude, firstly, regarding cardiometabolic risk stratification, in the general population both the concept of metabolic health and the cluster approaches are not superior to established risk prediction models. However, both subphenotyping approaches might be informative to improve the prediction of cardiometabolic risk in subgroups of individuals, such as those in different BMI categories or people with diabetes. Secondly, the applicability of the concepts by treating physicians and communication of the cardiometabolic risk with patients is easiest using the concept of metabolic health. Finally, the approaches to identify cardiometabolic risk clusters in particular have provided some evidence that they could be used to allocate individuals to specific pathophysiological risk groups, but whether this allocation is helpful for prevention and treatment still needs to be determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的丹寒完成签到,获得积分10
刚刚
刚刚
无奈的道天完成签到,获得积分10
1秒前
1秒前
SYBH发布了新的文献求助10
1秒前
444发布了新的文献求助30
2秒前
chendumo完成签到,获得积分10
2秒前
xkk完成签到,获得积分10
3秒前
QQ完成签到,获得积分10
3秒前
青藤发布了新的文献求助10
3秒前
阿吟完成签到,获得积分10
3秒前
cdx完成签到,获得积分10
3秒前
Ronggaz发布了新的文献求助10
3秒前
无花果应助紧张的冷卉采纳,获得10
3秒前
林小不脏完成签到,获得积分10
3秒前
CodeCraft应助崔福阔采纳,获得10
4秒前
Yiran完成签到,获得积分10
4秒前
小马要努力完成签到,获得积分10
4秒前
4秒前
肖志勇完成签到,获得积分10
4秒前
Lawgh发布了新的文献求助10
4秒前
田様应助liyihua采纳,获得30
5秒前
caocao发布了新的文献求助10
5秒前
TRY发布了新的文献求助10
6秒前
PPRer完成签到,获得积分10
6秒前
青青完成签到,获得积分10
6秒前
huizui发布了新的文献求助10
7秒前
可可完成签到,获得积分10
7秒前
牛牛发布了新的文献求助10
8秒前
香潘潘的楠瓜完成签到,获得积分10
8秒前
支妙完成签到,获得积分10
8秒前
天真幻珊完成签到 ,获得积分10
8秒前
GH发布了新的文献求助10
9秒前
9秒前
9秒前
tracy完成签到,获得积分10
9秒前
今后应助Angel采纳,获得10
9秒前
Hello应助维生素采纳,获得10
10秒前
儒雅的秋凌完成签到 ,获得积分10
10秒前
苹果雁桃完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316202
求助须知:如何正确求助?哪些是违规求助? 4458692
关于积分的说明 13871829
捐赠科研通 4348587
什么是DOI,文献DOI怎么找? 2388260
邀请新用户注册赠送积分活动 1382364
关于科研通互助平台的介绍 1351755