Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment

医学 人体测量学 代谢综合征 肥胖 风险评估 老年学 人口 环境卫生 星团(航天器) 危险分层 内科学 计算机安全 计算机科学 程序设计语言
作者
Norbert Stefan,Matthias B. Schulze
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:11 (6): 426-440 被引量:95
标识
DOI:10.1016/s2213-8587(23)00086-4
摘要

Among 20 leading global risk factors for years of life lost in 2040, reference forecasts point to three metabolic risks—high blood pressure, high BMI, and high fasting plasma glucose—as being the top risk variables. Building upon these and other risk factors, the concept of metabolic health is attracting much attention in the scientific community. It focuses on the aggregation of important risk factors, which allows the identification of subphenotypes, such as people with metabolically unhealthy normal weight or metabolically healthy obesity, who strongly differ in their risk of cardiometabolic diseases. Since 2018, studies that used anthropometrics, metabolic characteristics, and genetics in the setting of cluster analyses proposed novel metabolic subphenotypes among patients at high risk (eg, those with diabetes). The crucial point now is whether these subphenotyping strategies are superior to established cardiometabolic risk stratification methods regarding the prediction, prevention, and treatment of cardiometabolic diseases. In this Review, we carefully address this point and conclude, firstly, regarding cardiometabolic risk stratification, in the general population both the concept of metabolic health and the cluster approaches are not superior to established risk prediction models. However, both subphenotyping approaches might be informative to improve the prediction of cardiometabolic risk in subgroups of individuals, such as those in different BMI categories or people with diabetes. Secondly, the applicability of the concepts by treating physicians and communication of the cardiometabolic risk with patients is easiest using the concept of metabolic health. Finally, the approaches to identify cardiometabolic risk clusters in particular have provided some evidence that they could be used to allocate individuals to specific pathophysiological risk groups, but whether this allocation is helpful for prevention and treatment still needs to be determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信棒棒糖完成签到,获得积分10
3秒前
Greetdawn完成签到,获得积分10
7秒前
舒服的纸飞机完成签到,获得积分10
8秒前
11秒前
霍师傅发布了新的文献求助10
11秒前
11秒前
kelly完成签到,获得积分20
12秒前
坚强的元瑶完成签到,获得积分10
13秒前
王Hope完成签到,获得积分10
14秒前
666完成签到 ,获得积分10
14秒前
Raymond应助bianollo采纳,获得10
14秒前
归一完成签到 ,获得积分10
15秒前
司连喜发布了新的文献求助10
15秒前
YY发布了新的文献求助10
16秒前
16秒前
zydaphne完成签到 ,获得积分10
16秒前
周周完成签到 ,获得积分10
17秒前
FashionBoy应助傣妹纸如裴洱采纳,获得10
19秒前
19秒前
20秒前
影子1127发布了新的文献求助10
20秒前
大模型应助bianollo采纳,获得10
20秒前
隐形曼青应助司连喜采纳,获得10
24秒前
斯文败类应助繁荣的又夏采纳,获得10
24秒前
BUAAzmt发布了新的文献求助10
24秒前
义气的如豹完成签到,获得积分10
24秒前
研友_89Nm7L发布了新的文献求助50
26秒前
影子1127完成签到,获得积分10
29秒前
31秒前
32秒前
大黄完成签到 ,获得积分10
32秒前
李爱国应助研友_89Nm7L采纳,获得50
33秒前
34秒前
34秒前
35秒前
小张不扬完成签到,获得积分10
35秒前
37秒前
JMchiefEditor完成签到,获得积分10
37秒前
38秒前
hhhhz发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275