亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mining and modeling the direct and indirect causalities among factors affecting the Urban Heat Island severity using structural machine learned Bayesian networks

贝叶斯网络 城市热岛 计算机科学 贝叶斯概率 城市化 土地覆盖 机器学习 土地利用 人工智能 地理 气象学 生态学 生物
作者
Ghiwa Assaf,Xi Hu,Rayan H. Assaad
出处
期刊:urban climate [Elsevier BV]
卷期号:49: 101570-101570 被引量:8
标识
DOI:10.1016/j.uclim.2023.101570
摘要

Urbanization, population growth, and climate change have several impacts on the environment including the extreme increase in temperature in urban areas, which is also known as the Urban Heat Island (UHI) effect. This paper presents a novel white-box data-driven structural learning Bayesian network model that (1) discovers knowledge from the data by identifying the key factors impacting the UHI severity; (2) captures the causal (direct and indirect) relationships between the different variables that influence UHI severity, and (3) represents the learned relationships into graphical networks that are both machine- and human-interpretable. Different Bayesian networks were developed based on a dataset comprised of 31 meteorological, socio-demographic, geographic, and land use/land cover factors gathered for the State of New Jersey, USA. Furthermore, the different Bayesian networks were assessed and compared to determine the optimal structure. Finally, the best model was validated on an unseen testing sample where an overall accuracy of 88.51% was obtained. The proposed optimal Bayesian network model was able to discover knowledge about 13 causal relationships between 12 variables (one of which is the UHI severity). The outcomes of this research are crucial for urban management and for proposing proper adaptation plans for the UHI effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
一颗忧伤的覆盆子完成签到,获得积分10
30秒前
科研通AI5应助duoduoqian采纳,获得10
34秒前
34秒前
平淡的翅膀完成签到 ,获得积分10
35秒前
E7完成签到,获得积分10
40秒前
41秒前
黎aimomo发布了新的文献求助50
54秒前
59秒前
1分钟前
学术通zzz发布了新的文献求助10
1分钟前
present完成签到,获得积分20
1分钟前
duoduoqian发布了新的文献求助10
1分钟前
星辰大海应助duoduoqian采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
seven发布了新的文献求助10
1分钟前
seven完成签到,获得积分20
1分钟前
沉静茗完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
发个15分的完成签到 ,获得积分10
3分钟前
熊啊发布了新的文献求助10
3分钟前
小二郎应助wawa采纳,获得10
4分钟前
黎aimomo完成签到,获得积分10
4分钟前
4分钟前
wawa发布了新的文献求助10
4分钟前
今后应助晓豪采纳,获得10
4分钟前
小蘑菇应助wawa采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
5分钟前
SDF完成签到,获得积分10
5分钟前
在水一方应助靓丽寄文采纳,获得30
5分钟前
5分钟前
翟翟发布了新的文献求助10
5分钟前
SDF发布了新的文献求助30
5分钟前
5分钟前
靓丽寄文发布了新的文献求助30
5分钟前
传奇3应助育种小杰采纳,获得10
6分钟前
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359351
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713