已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Mining and modeling the direct and indirect causalities among factors affecting the Urban Heat Island severity using structural machine learned Bayesian networks

贝叶斯网络 城市热岛 计算机科学 贝叶斯概率 城市化 土地覆盖 机器学习 土地利用 人工智能 地理 气象学 生态学 生物
作者
Ghiwa Assaf,Xi Hu,Rayan H. Assaad
出处
期刊:urban climate [Elsevier BV]
卷期号:49: 101570-101570 被引量:8
标识
DOI:10.1016/j.uclim.2023.101570
摘要

Urbanization, population growth, and climate change have several impacts on the environment including the extreme increase in temperature in urban areas, which is also known as the Urban Heat Island (UHI) effect. This paper presents a novel white-box data-driven structural learning Bayesian network model that (1) discovers knowledge from the data by identifying the key factors impacting the UHI severity; (2) captures the causal (direct and indirect) relationships between the different variables that influence UHI severity, and (3) represents the learned relationships into graphical networks that are both machine- and human-interpretable. Different Bayesian networks were developed based on a dataset comprised of 31 meteorological, socio-demographic, geographic, and land use/land cover factors gathered for the State of New Jersey, USA. Furthermore, the different Bayesian networks were assessed and compared to determine the optimal structure. Finally, the best model was validated on an unseen testing sample where an overall accuracy of 88.51% was obtained. The proposed optimal Bayesian network model was able to discover knowledge about 13 causal relationships between 12 variables (one of which is the UHI severity). The outcomes of this research are crucial for urban management and for proposing proper adaptation plans for the UHI effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搞论文小白完成签到 ,获得积分10
2秒前
4秒前
科研通AI5应助柳娅茹采纳,获得10
4秒前
搞笑煎蛋完成签到 ,获得积分10
5秒前
时梦冉完成签到 ,获得积分10
5秒前
5秒前
脑洞疼应助Taro采纳,获得10
5秒前
6秒前
1111完成签到 ,获得积分10
6秒前
Leone发布了新的文献求助10
7秒前
9秒前
9秒前
EvilPeas发布了新的文献求助10
10秒前
147发布了新的文献求助10
11秒前
ppxx完成签到,获得积分10
12秒前
12秒前
柳易槐发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
运运完成签到 ,获得积分10
17秒前
汉堡包应助147采纳,获得50
17秒前
煎饼小狗发布了新的文献求助10
18秒前
彼黍离离发布了新的文献求助10
19秒前
Yang_728发布了新的文献求助80
20秒前
没什么不可能哒完成签到,获得积分10
22秒前
liuye0202发布了新的文献求助10
22秒前
song完成签到 ,获得积分10
22秒前
Leone完成签到,获得积分10
25秒前
zfj完成签到 ,获得积分10
26秒前
李爱国应助彼黍离离采纳,获得10
28秒前
清脆凡阳完成签到 ,获得积分10
30秒前
隐形曼青应助SHF采纳,获得10
35秒前
36秒前
39秒前
39秒前
852应助MoreScholarship采纳,获得10
41秒前
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090153
求助须知:如何正确求助?哪些是违规求助? 4304761
关于积分的说明 13414823
捐赠科研通 4130452
什么是DOI,文献DOI怎么找? 2262325
邀请新用户注册赠送积分活动 1266229
关于科研通互助平台的介绍 1200912