幽门螺杆菌
胃粘膜
Wnt信号通路
免疫组织化学
快速尿素酶试验
生物
信号转导
连环素
免疫荧光
病理
染色
炎症
分子生物学
免疫学
抗体
胃
医学
胃炎
细胞生物学
生物化学
遗传学
作者
Liteng Lin,Baoyuan Xie,Jia Shi,Chuan‐Min Zhou,Jun Yi,Jianing Chen,Jian He,Hongliang Wei
标识
DOI:10.1134/s0026893323040118
摘要
Helicobacter pylori (H. pylori) infection can cause persistent inflammatory response in human gastric mucosal epithelial cells, which may result in the occurrence of cancer. However, the underlying mechanism of carcinogenesis has not been elucidated yet. Herein, we established the models of chronic H. pylori infection in GES-1 cells and C57BL/6J mice. Interleukin 8 (IL-8) level was detected by ELISA. The expression of NF-κB p65, IL-8, Wnt2 and β-catenin mRNA and proteins was evaluated by real-time PCR, Western blotting, immunofluorescence staining, and immunohistochemistry. The infection of H. pylori in mice was evaluated by rapid urease test, H&E staining and Warthin‒Starry silver staining. The morphological changes of gastric mucosa were observed by electron microscopy. Our results showed that in H. pylori infected gastric mucosal cells along with activation of NF-κB signaling pathway and increase of IL-8 level, the expression of Wnt2 was also increased significantly, which preliminarily indicates that IL-8 can positively regulate the expression of Wnt2. Studies in chronic H. pylori infected C57BL/6J mice models showed that there was an increased incidence of premalignant lesions in the gastric mucosa tissue. Through comparing changes of gastric mucosal cell ultrastructure and analyzing the relationship between NF-κB signaling pathway and Wnt2 expression, we found that H. pylori infection activated NF-κB signal pathways, and the massive release of IL-8 was positively correlated with the high expression of Wnt2 protein. Subsequently, the activated Wnt/β-catenin signal pathways may be involved in the malignant transformation of gastric mucosal cells. Collectively, H. pylori chronic infection may continuously lead to persistent inflammatory response: activate NF-κB pathway, promote IL-8 release and thereby activate Wnt/β-catenin pathway. IL-8 probably plays an important role of a linker in coupling these two signal pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI