Complex wavelet-based Transformer for neurodevelopmental disorder diagnosis via direct modeling of real and imaginary components

作者
Ah-Yeong Jeong,Da-Woon Heo,Heung‐Il Suk
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:109: 103914-103914
标识
DOI:10.1016/j.media.2025.103914
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) measures intrinsic neural activity, and analyzing its frequency-domain characteristics provides insights into brain dynamics. Owing to these properties, rs-fMRI is widely used to investigate brain disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Conventional frequency-domain analyses typically rely on the Fourier transform, which lacks flexibility in capturing non-stationary neural signals due to its fixed resolution. Furthermore, these methods primarily utilize only real-valued features, such as the magnitude or phase, derived from complex-valued spectral representations. Consequently, direct modeling of the real and imaginary components, particularly within fMRI analyses, remains largely unexplored, overlooking the distinct and complementary spectral information encoded in these components. To address these limitations, we propose a novel Transformer-based framework that explicitly models the real and imaginary components of continuous wavelet transform (CWT) coefficients from rs-fMRI signals. Our architecture integrates spectral, temporal, and spatial attention modules, employing self- and cross-attention mechanisms to jointly capture intra- and inter-component relationships. Applied to the Autism Brain Imaging Data Exchange (ABIDE)-I and ADHD-200 datasets, our approach achieved state-of-the-art classification performance compared to existing baselines. Comprehensive ablation studies demonstrated the advantages of directly utilizing real and imaginary components over conventional frequency-domain features and validate each module's contribution. Moreover, attention-based analyses revealed frequency- and region-specific patterns consistent with known neurobiological alterations in ASD and ADHD. These findings highlight that preserving and jointly leveraging the real and imaginary components of CWT-based representations not only enhances diagnostic performance but also provides interpretable insights into neurodevelopmental disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fffff完成签到,获得积分10
刚刚
研友_VZG7GZ应助烂漫的初之采纳,获得10
刚刚
1秒前
1秒前
香蕉觅云应助璇璇采纳,获得10
1秒前
善学以致用应助动人的剑采纳,获得10
2秒前
2秒前
3秒前
3秒前
Jian完成签到 ,获得积分10
3秒前
3秒前
小周发布了新的文献求助10
3秒前
科目三应助啦啦啦采纳,获得10
4秒前
共享精神应助ATOM采纳,获得10
4秒前
残酷月光完成签到,获得积分10
4秒前
CYF发布了新的文献求助10
4秒前
5秒前
玺2发布了新的文献求助10
5秒前
yoho应助JOJO采纳,获得10
5秒前
wuyuan0318完成签到,获得积分10
5秒前
ljj722发布了新的文献求助10
6秒前
CodeCraft应助ee采纳,获得10
6秒前
dmyinZz发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
317发布了新的文献求助10
7秒前
安静翎完成签到,获得积分10
7秒前
徐智秀完成签到,获得积分10
7秒前
五月发布了新的文献求助10
7秒前
8秒前
Fancy完成签到,获得积分10
8秒前
9秒前
Synthen发布了新的文献求助10
9秒前
完美世界应助CYF采纳,获得10
10秒前
我是老大应助CYF采纳,获得10
10秒前
10秒前
11秒前
无花果应助十年小橘采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906