Artificial Intelligence in Idiopathic Pulmonary Fibrosis: Advances, Challenges, and Future Directions

作者
Moisés Selman,Ivette Buendía-Roldán,Annie Pardo
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:: 2501112-2501112
标识
DOI:10.1183/13993003.01112-2025
摘要

Idiopathic Pulmonary Fibrosis (IPF) is a progressive disease of unknown etiology, characterized by a radiological and/or morphological pattern of usual interstitial pneumonia. Its diagnosis is challenging, and disease progression is often variable and unpredictable. In recent years the introduction of Artificial Intelligence (AI), particularly machine-learning (ML) and deep-learning (DL) models, has shown the potential to improve the diagnosis, prognosis, and therapeutic strategies for IPF. As part of DL, convolutional neural network, enhance the accuracy of high-resolution computed tomography analysis, facilitating early and precise diagnosis. Likewise, predictive ML and DL models are being developed using clinical, morphological, transcriptional and imaging data to assess disease progression and stratify patients by risk, thereby improving prognosis evaluation. Furthermore, AI-driven drug discovery may optimize treatment strategies by identifying novel therapeutic targets, as recently demonstrated with the discovery of an NCK-interacting kinase inhibitor with strong antifibrotic properties. However, several challenges hamper widespread clinical integration and real-life implementation, including data heterogeneity, model interpretability, and the need for robust validation through large-scale, multicenter studies. Future research should prioritize the development of standardized models of AI in large cohorts of IPF patients, combining clinical, imaging, morphologic, multiomics and other data, and enhance model transparency to strengthen clinical confidence. With continued advancements, AI holds potential to improve IPF management, enabling early diagnosis, individualized prognosis, and targeted therapy, all aimed at improving patient outcomes. In this review, we explore the evolving role of AI in IPF management, its potential to support clinical decisions, and the challenges to its clinical integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zdx12324完成签到,获得积分10
1秒前
1秒前
潞垚发布了新的文献求助10
3秒前
4秒前
4秒前
虚心的颜发布了新的文献求助10
4秒前
诚心八宝粥完成签到,获得积分10
4秒前
在水一方应助达达采纳,获得10
5秒前
张子捷发布了新的文献求助10
5秒前
酷波er应助枫叶采纳,获得10
6秒前
俏皮诺言完成签到,获得积分10
6秒前
李爱国应助haonanchen采纳,获得10
6秒前
大力三问完成签到 ,获得积分10
6秒前
8秒前
粗暴的鱼发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
herococa应助单薄的绾绾采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
希望天下0贩的0应助qianlu采纳,获得10
11秒前
宇儿完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
ml发布了新的文献求助10
13秒前
零度蓝莓发布了新的文献求助10
13秒前
一千岁不老药完成签到,获得积分10
14秒前
man发布了新的文献求助10
15秒前
庄博一完成签到,获得积分10
16秒前
16秒前
屈苞络发布了新的文献求助10
17秒前
佳佳发布了新的文献求助10
17秒前
兴奋冬萱发布了新的文献求助10
17秒前
一一应助zhou采纳,获得10
18秒前
18秒前
19秒前
19秒前
隐形曼青应助冯冯采纳,获得10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649184
求助须知:如何正确求助?哪些是违规求助? 4777553
关于积分的说明 15046941
捐赠科研通 4808070
什么是DOI,文献DOI怎么找? 2571244
邀请新用户注册赠送积分活动 1527831
关于科研通互助平台的介绍 1486710