Mapping of antibody epitopes based on docking and homology modeling

同源建模 对接(动物) 表位 计算生物学 大分子对接 抗原 抗体 表位定位 计算机科学 蛋白质结构 化学 生物 生物化学 遗传学 医学 护理部
作者
Israel Desta,Sergei Kotelnikov,George Jones,Usman Ghani,Mikhail Abyzov,Yaroslav Kholodov,Daron M. Standley,Maria Sabitova,Dmitri Beglov,Sándor Vajda,Dima Kozakov
出处
期刊:Proteins [Wiley]
卷期号:91 (2): 171-182 被引量:18
标识
DOI:10.1002/prot.26420
摘要

Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助水煮牛肉火锅采纳,获得10
刚刚
zombleq发布了新的文献求助10
1秒前
1秒前
CipherSage应助加百莉采纳,获得10
1秒前
Wuc发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
小蘑菇应助KK采纳,获得10
2秒前
情怀应助蓟菏为衣采纳,获得10
2秒前
安详映阳完成签到 ,获得积分10
3秒前
mokano完成签到,获得积分10
4秒前
bubble嘞完成签到 ,获得积分10
4秒前
4秒前
4秒前
喜欢唐啤完成签到,获得积分10
4秒前
刘香完成签到,获得积分10
4秒前
852应助单身的科研狗采纳,获得10
4秒前
优秀发布了新的文献求助10
5秒前
我是老大应助dzw采纳,获得10
5秒前
脑洞疼应助王强采纳,获得10
5秒前
Joyhold完成签到,获得积分10
6秒前
哈哈哈完成签到,获得积分10
6秒前
林夏发布了新的文献求助10
7秒前
7秒前
8秒前
刘香发布了新的文献求助10
9秒前
SisiZheng发布了新的文献求助10
9秒前
daxing完成签到,获得积分10
9秒前
bkagyin应助健忘的Sherry苑博采纳,获得10
9秒前
盈盈发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
14秒前
大模型应助SisiZheng采纳,获得20
14秒前
小灰灰完成签到,获得积分10
14秒前
14秒前
puppynorio完成签到,获得积分10
14秒前
科研通AI5应助安南采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183197
求助须知:如何正确求助?哪些是违规求助? 4369586
关于积分的说明 13606801
捐赠科研通 4221418
什么是DOI,文献DOI怎么找? 2315112
邀请新用户注册赠送积分活动 1313884
关于科研通互助平台的介绍 1262660