An Improved Combination of Faster R-CNN and U-Net Network for Accurate Multi-Modality Whole Heart Segmentation

分割 计算机科学 最小边界框 卷积神经网络 人工智能 模态(人机交互) 图像分割 交叉口(航空) 模式识别(心理学) 计算机视觉 图像(数学) 工程类 航空航天工程
作者
Hengfei Cui,Yifan Wang,Yan Li,Di Xu,Lei Jiang,Yong Xia,Yanning Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3408-3419 被引量:7
标识
DOI:10.1109/jbhi.2023.3266228
摘要

Detailed information of substructures of the whole heart is usually vital in the diagnosis of cardiovascular diseases and in 3D modeling of the heart. Deep convolutional neural networks have been demonstrated to achieve state-of-the-art performance in 3D cardiac structures segmentation. However, when dealing with high-resolution 3D data, current methods employing tiling strategies usually degrade segmentation performances due to GPU memory constraints. This work develops a two-stage multi-modality whole heart segmentation strategy, which adopts an improved Combination of Faster R-CNN and 3D U-Net (CFUN+). More specifically, the bounding box of the heart is first detected by Faster R-CNN, and then the original Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images of the heart aligned with the bounding box are input into 3D U-Net for segmentation. The proposed CFUN+ method redefines the bounding box loss function by replacing the previous Intersection over Union (IoU) loss with Complete Intersection over Union (CIoU) loss. Meanwhile, the integration of the edge loss makes the segmentation results more accurate, and also improves the convergence speed. The proposed method achieves an average Dice score of 91.1% on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge CT dataset, which is 5.2% higher than the baseline CFUN model, and achieves state-of-the-art segmentation results. In addition, the segmentation speed of a single heart has been dramatically improved from a few minutes to less than 6 seconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天真老三完成签到,获得积分10
刚刚
赵小娜完成签到,获得积分20
刚刚
阳光襄完成签到,获得积分10
刚刚
刚刚
上官若男应助啊嘞哇塞采纳,获得10
1秒前
雷小仙儿完成签到,获得积分10
1秒前
早点发SCI完成签到,获得积分10
1秒前
2秒前
2秒前
kingwill应助奥沙利楠采纳,获得20
2秒前
willing-li发布了新的文献求助10
2秒前
2秒前
远方完成签到,获得积分10
3秒前
csm发布了新的文献求助10
3秒前
3秒前
华仔应助小布丁采纳,获得10
4秒前
高手中的糕手完成签到,获得积分10
4秒前
4秒前
Renee完成签到 ,获得积分10
4秒前
受伤芝麻完成签到,获得积分10
4秒前
4秒前
123456完成签到,获得积分20
4秒前
憨憨韩憨憨完成签到,获得积分10
4秒前
xmuchem发布了新的文献求助10
5秒前
欢喜的早晨完成签到,获得积分10
5秒前
5秒前
完美世界应助研友_kng1r8采纳,获得10
6秒前
彩色立辉发布了新的文献求助10
6秒前
6秒前
爆米花应助伊地知虹夏采纳,获得10
6秒前
6秒前
7秒前
大宁完成签到,获得积分10
7秒前
淡定的太清完成签到,获得积分10
7秒前
领导范儿应助土豆淀粉采纳,获得10
8秒前
无异常发布了新的文献求助10
8秒前
硕士发布了新的文献求助10
8秒前
大个应助csm采纳,获得10
9秒前
认真的雪完成签到,获得积分10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119002
求助须知:如何正确求助?哪些是违规求助? 4324851
关于积分的说明 13474267
捐赠科研通 4158026
什么是DOI,文献DOI怎么找? 2278702
邀请新用户注册赠送积分活动 1280503
关于科研通互助平台的介绍 1219246