Emergence of a temporal processing gradient from naturalistic inputs and network connectivity

计算机科学 等级制度 叙述的 人工神经网络 拓扑(电路) 人工智能 神经科学 认知科学 心理学 数学 市场经济 语言学 组合数学 哲学 经济
作者
Claire H. C. Chang,Samuel A. Nastase,Uri Hasson,Peter Ford Dominey
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (28)
标识
DOI:10.1073/pnas.2420105122
摘要

Natural language unfolds over multiple nested timescales: Words form sentences, sentences form paragraphs, and paragraphs build into full narratives. Correspondingly, the brain exhibits a hierarchy of processing timescales, spanning from lower- to higher-order regions. During narrative comprehension, neural activation patterns have been shown to propagate along this cortical hierarchy with increasing temporal delays (lags). To investigate the mechanisms underlying this lag gradient, we systematically manipulate the structure of a recurrent reservoir network. In the biologically inspired “Limited-Canal” configuration, word embeddings are received by a limited set of sensory neurons and transmitted through a series of local connections to the distal end of the network. This configuration endows the network with an intrinsic lag gradient, inducing a cascade of activity as information propagates along the network. We found that, similar to the human brain, this intrinsic lag gradient is enhanced by naturalistic narratives. The interaction between naturalistic input and network structure becomes evident when manipulating local connectivity through the “canal width” parameter, which determines how closely the Limited-Canal model mirrors the human brain’s sensitivity to narrative structure. In addition, we found that processing cost, as a computational proxy for the BOLD signal, increases more slowly in later neurons, which can account for the emergence of the lag gradient. Our results demonstrate that narrative-driven neural dynamics can emerge from macroscale anatomical topology alone without task-specific training. These fundamental topological properties of the human cortex may have evolved to effectively process the hierarchical structures ubiquitous in the natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助yeLI采纳,获得100
刚刚
睡觉睡觉发布了新的文献求助10
刚刚
小季丶二五完成签到,获得积分10
1秒前
SimonHHH发布了新的文献求助10
2秒前
卡卡584发布了新的文献求助10
2秒前
长度2到发布了新的文献求助10
2秒前
刘玄德完成签到,获得积分20
2秒前
今后应助liujunhong采纳,获得10
2秒前
3秒前
彭于晏应助Akiba采纳,获得10
3秒前
4秒前
武雨寒完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
小宁同学发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
蒋若风发布了新的文献求助10
6秒前
耿怀肖完成签到,获得积分10
6秒前
6秒前
喜悦兔子完成签到 ,获得积分0
7秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
顺利的琳应助科研通管家采纳,获得30
7秒前
fifteen应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得20
8秒前
情怀应助科研通管家采纳,获得10
8秒前
柏林寒冬应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得200
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
鸣笛应助科研通管家采纳,获得20
8秒前
Akim应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
以心传心完成签到,获得积分10
9秒前
开心怀曼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664940
求助须知:如何正确求助?哪些是违规求助? 4046277
关于积分的说明 12515223
捐赠科研通 3738731
什么是DOI,文献DOI怎么找? 2064808
邀请新用户注册赠送积分活动 1094319
科研通“疑难数据库(出版商)”最低求助积分说明 974773