亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridge Structural Damage Identification Technique Based on BPNN and Vehicle-bridge Interaction Analysis

桥(图论) 鉴定(生物学) 结构工程 工程类 法律工程学 计算机科学 植物 医学 生物 内科学
作者
Lingling Li,Bob Zhang
出处
期刊:Electronic Journal of Structural Engineering 卷期号:25 (3): 17-23
标识
DOI:10.56748/ejse.24774
摘要

During the use of bridges, the traditional method of detecting the bridge condition cannot be continuously monitored and maintained. To address this problem, the study proposed a damage identification method based on the interaction of back propagation neural network and vehicle-bridge interaction. The method analyzed the car response when the car passes over the bridge through back propagation neural network combined with coupled vibration of the vehicle-bridge, and carried out the inference of the response of the contact point of the car tire and the bridge. To create the damaged structural response model of the simulated bridge, the stiffness of the bridge contact point unit was then decreased. The response of the contact point of the bridge deck and tires was then used as the input of the back propagation neural network to compute the coupled vibration equations of the vehicle and bridge, and create the data set of the vehicle and bridge’s response. It can also locate the damaged bridge structure appropriately, and assess the extent of damage. The results demonstrated that the average accuracy of back propagation neural network in locating the damaged bridge structure was about 90%, the average accuracy of locating the damaged structure was kept at 85% under circumstances where varying noise levels are present. The maximum accuracy of assessing the degree of damage to the damaged structure was 98.54%, which is around 10% greater than the deep belief network and support vector machine’s performance in identifying the damage to the bridge structure. Taken together, the proposed bridge structure damage identification method can achieve high localization accuracy as well as quantitative accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanglu完成签到 ,获得积分10
4秒前
迷你的靖雁完成签到,获得积分10
6秒前
FashionBoy应助jjy采纳,获得30
7秒前
斯文的凝珍完成签到,获得积分10
11秒前
11秒前
yimoyafan完成签到,获得积分10
13秒前
dwx0529发布了新的文献求助10
14秒前
16秒前
moiumuio完成签到,获得积分10
17秒前
17秒前
天天快乐应助自由凌波采纳,获得10
21秒前
蘇q发布了新的文献求助10
22秒前
jjy发布了新的文献求助30
24秒前
26秒前
虞美人完成签到 ,获得积分10
26秒前
30秒前
爱壹帆完成签到,获得积分10
33秒前
勤勤恳恳写论文完成签到 ,获得积分10
34秒前
Carol发布了新的文献求助10
35秒前
自由凌波完成签到,获得积分10
36秒前
36秒前
38秒前
自由凌波发布了新的文献求助10
39秒前
edward发布了新的文献求助10
42秒前
43秒前
44秒前
Ava应助科研通管家采纳,获得10
46秒前
starry发布了新的文献求助10
47秒前
李爱国应助PPD采纳,获得10
47秒前
yaya完成签到 ,获得积分10
51秒前
Amelia完成签到 ,获得积分10
53秒前
1分钟前
灯露发布了新的文献求助10
1分钟前
遇上就这样吧给Vicky的求助进行了留言
1分钟前
可久斯基完成签到 ,获得积分10
1分钟前
高高尔蓉发布了新的文献求助10
1分钟前
CodeCraft应助lty采纳,获得10
1分钟前
1分钟前
只如初完成签到 ,获得积分10
1分钟前
lty发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851329
求助须知:如何正确求助?哪些是违规求助? 4150189
关于积分的说明 12856498
捐赠科研通 3898038
什么是DOI,文献DOI怎么找? 2142319
邀请新用户注册赠送积分活动 1162103
关于科研通互助平台的介绍 1062102