Molecular Property Prediction Based on Improved Graph Transformer Network and Multitask Joint Learning Strategy

变压器 多任务学习 计算机科学 财产(哲学) 图形 接头(建筑物) 人工智能 机器学习 理论计算机科学 工程类 任务(项目管理) 电压 电气工程 结构工程 认识论 哲学 系统工程
作者
Xin Zhao,Shuyi Zhang,Tao Zhang,Haotong Li,Yahui Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (19): 10561-10572
标识
DOI:10.1021/acs.jcim.5c01339
摘要

Molecular property prediction is of great significance in drug design and materials science. However, due to the complexity and diversity of molecular structures, existing methods often struggle to simultaneously capture both the local chemical environments and the global structural characteristics of molecules, and they lack generalization ability when dealing with multiple data sets. To address these challenges, this paper proposes a molecular property prediction approach based on an improved Graph Transformer network combined with a multitask joint learning strategy. Specifically, we enhance the attention mechanism by integrating atomic relative position encoding and bond information encoding, thereby explicitly incorporating spatial structure and chemical bond features into the model. Meanwhile, we construct a hierarchical feature extraction architecture by alternately stacking local message-passing layers and global attention layers, and we adopt a mixture-of-experts mechanism to achieve collaborative representation of both local molecular features and global structure. In addition, we design a multitask joint learning strategy that leverages alternating training on multiple tasks and dynamic weighting adjustments to significantly improve the model's generalization performance across diverse data sources. Experimental results show that our method achieves higher prediction accuracy on multiple classification and regression data sets, with an average improvement of 6.4% and 16.7% over baseline methods. Compared with single-data set training, our multitask joint learning strategy further boosts the prediction accuracy by an average of 2.8% and 6.2%. These findings indicate that the proposed approach is highly effective in predicting a wide range of molecular properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉从云完成签到,获得积分10
刚刚
Molly发布了新的文献求助10
1秒前
1秒前
释然zc发布了新的文献求助10
2秒前
CipherSage应助林屿溪采纳,获得10
2秒前
badercao发布了新的文献求助20
2秒前
3秒前
科研通AI2S应助故意的如冬采纳,获得10
3秒前
陶醉从云发布了新的文献求助10
3秒前
4秒前
rzzzy完成签到,获得积分20
4秒前
4秒前
ding应助kk采纳,获得10
4秒前
sim发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
刘士通完成签到 ,获得积分10
5秒前
5秒前
11发布了新的文献求助10
6秒前
6秒前
科目三应助进击的野草采纳,获得10
6秒前
6秒前
赘婿应助任性的诗兰采纳,获得10
7秒前
爱笑的千寻完成签到,获得积分10
8秒前
8秒前
JamesPei应助狂野的斑马采纳,获得10
9秒前
rzzzy发布了新的文献求助10
10秒前
kingmantj发布了新的文献求助10
10秒前
NexusExplorer应助欣慰元蝶采纳,获得10
10秒前
Lorain发布了新的文献求助10
10秒前
FashionBoy应助sci_zt采纳,获得10
11秒前
11秒前
ohh完成签到,获得积分10
12秒前
12秒前
12秒前
zhiyu发布了新的文献求助10
12秒前
ChrisLynn发布了新的文献求助10
12秒前
Sakura完成签到 ,获得积分10
12秒前
勤恳的一刀完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709704
求助须知:如何正确求助?哪些是违规求助? 5196042
关于积分的说明 15257869
捐赠科研通 4862344
什么是DOI,文献DOI怎么找? 2610072
邀请新用户注册赠送积分活动 1560428
关于科研通互助平台的介绍 1518131