Mechanism of Multi‐Scale Interface Bonding in PVDF‐Modified Continuous Carbon Fiber Reinforced TPU Composites

材料科学 复合材料 接口(物质) 机制(生物学) 纤维 碳纤维 复合数 哲学 认识论 毛细管数 毛细管作用
作者
Yaru Zhang,Yuzhong Wang,Kaiyue Ma,Wenhua Guo,Bingheng Lu
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.70475
摘要

ABSTRACT Strengthening the interfacial bonding between continuous carbon fiber (CCF) and the matrix, as well as minimizing defects, is crucial for advancing rapid prototyping of complex load‐bearing components and enhancing performance. Investigating the combination mechanisms across atomic, microscopic, and macroscopic multi‐scale interfaces can help overcome the bottleneck characterized by “strong fibers–weak interfaces” in carbon fiber reinforced composites (CFRP). In this paper, we present a pretreatment strategy involving the impregnation of CCF with polyvinylidene fluoride (PVDF) solution, followed by wet twisting. This approach aims to enhance the mechanical properties of CCF filaments, improve interfacial characteristics, and reduce pore defects in printed components. The impregnation process parameters and the wet twisting procedure were optimized through orthogonal experiments, elucidating the mechanism of interface bonding at the fiber scale. Subsequently, the interfacial bonding between the molecular chain layers of PVDF and TPU was simulated. By investigating hydrogen bonds, van der Waals forces, Coulomb interactions, total weak interactions, and the evolution of interfacial system density, we explored the regulatory mechanisms governing molecular chain mobility and interfacial bonding strength within this system at various printing temperatures. Furthermore, the XCT non‐destructive characterization method was employed to investigate the impact of the aforementioned processes on the interface bonding and internal porosity of the printed components from a macroscopic perspective. This indicates that the process is effective in reducing pore defects within the printed part and enhancing interface bonding performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
1秒前
2秒前
pia叽完成签到 ,获得积分10
4秒前
uu完成签到,获得积分10
5秒前
6秒前
8秒前
sooo完成签到,获得积分10
8秒前
Akim应助Chaimengdi采纳,获得10
9秒前
9秒前
完美世界应助不系舟采纳,获得10
9秒前
别当真完成签到 ,获得积分10
12秒前
田様应助杨玄采纳,获得10
12秒前
hhh完成签到,获得积分10
13秒前
13秒前
冰霜发布了新的文献求助10
15秒前
to高坚果发布了新的文献求助10
18秒前
安详的曲奇完成签到,获得积分10
20秒前
mmyhn发布了新的文献求助10
24秒前
自然如曼完成签到 ,获得积分10
25秒前
亲爱的冯老师完成签到 ,获得积分10
25秒前
SciGPT应助sam采纳,获得20
25秒前
风过大泽发布了新的文献求助10
26秒前
27秒前
何海发布了新的文献求助10
28秒前
FashionBoy应助xfyxxh采纳,获得10
28秒前
28秒前
杨玄完成签到,获得积分10
28秒前
28秒前
28秒前
渡月桥完成签到,获得积分10
29秒前
zzzz发布了新的文献求助10
30秒前
30秒前
务实小鸽子完成签到 ,获得积分10
30秒前
zzy完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
34秒前
35秒前
DJsky123发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284315
求助须知:如何正确求助?哪些是违规求助? 4437842
关于积分的说明 13815150
捐赠科研通 4318810
什么是DOI,文献DOI怎么找? 2370658
邀请新用户注册赠送积分活动 1366010
关于科研通互助平台的介绍 1329507