Deep transfer learning based on transformer for flood forecasting in data-sparse basins

构造盆地 变压器 大洪水 计算机科学 均方误差 学习迁移 防洪 人工智能 水文学(农业) 环境科学 地质学 统计 数学 电压 地理 地貌学 物理 考古 量子力学 岩土工程
作者
Yuanhao Xu,Kairong Lin,Caihong Hu,Shu‐Li Wang,Qiang Wu,Li Zhang,Guang Ran
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:625: 129956-129956 被引量:44
标识
DOI:10.1016/j.jhydrol.2023.129956
摘要

There exists a substantial disparity in the distribution of streamflow gauge and basin characteristic information, with a majority of flood observations being recorded from a limited number of well-monitored locations. Transferring hydrological knowledge from data-rich to data-sparse basins has been a persistent issue. While artificial intelligence methods, such as Long-Short-Term Memory Neural Networks (LSTMs) have been attempted for simulating across different basins, the problem of gradient vanishing still inevitably lead to difficulties in responding to new basin datasets. A novel solution is presented in the form of the Transfer Learning Framework based on Transformer (TL-Transformer), which can accurately predict flooding in data-sparse basins (targets) by using models from data-rich basins (sources) without requiring extensive basin attributes at the target location. The framework was demonstrated in the middle reaches of the Yellow River, and performance was evaluated using the Nash Sutcliffe efficiency coefficient, root mean square error, and bias. The results show that TL-Transformer outperforms other models, including TOPMODEL, MLP, TL-MLP, LSTM, TL-LSTM and Transformer in all target basin stations. Compared with those models that without transfer learning, TL-Transformer showed significantly improved performance, where NSE increased by 0.2 and reached above 0.75, RMSE and bias were also controlled within 60 and 20, respectively. Furthermore, pre-training on basins with hydrological similarities increases the benefits of Transfer Learning, and we explained this response phenomenon through the topographic index. These results suggest that deep learning can tap into the commonalities in hydrological data across basins to improve the accuracy of flood forecast applications in areas with limited observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助LL采纳,获得10
1秒前
薯愿完成签到,获得积分10
2秒前
3秒前
学术通zzz发布了新的文献求助10
3秒前
5秒前
violet_119发布了新的文献求助10
5秒前
5秒前
haha发布了新的文献求助10
6秒前
6秒前
weishen应助jjj采纳,获得30
6秒前
科研通AI5应助jjj采纳,获得30
6秒前
深情安青应助端庄蚂蚁采纳,获得10
6秒前
AIGT完成签到,获得积分10
7秒前
凄凉山谷的风完成签到,获得积分10
7秒前
英俊的铭应助Transecond采纳,获得10
8秒前
哟嚛完成签到,获得积分10
10秒前
仰卧起坐发布了新的文献求助10
10秒前
卡皮巴拉发布了新的文献求助10
11秒前
dd发布了新的文献求助30
11秒前
田様应助徐清风采纳,获得10
12秒前
张宝完成签到,获得积分10
15秒前
16秒前
17秒前
凣凢完成签到,获得积分10
17秒前
科研通AI5应助世界和平采纳,获得10
17秒前
18秒前
善学以致用应助宋ke采纳,获得10
18秒前
Transecond完成签到,获得积分20
18秒前
山山而川发布了新的文献求助10
19秒前
豆沙包完成签到,获得积分10
19秒前
19秒前
在水一方应助YYMM采纳,获得10
20秒前
科研通AI5应助盛夏如花采纳,获得10
20秒前
violet_119完成签到,获得积分10
21秒前
制冷剂发布了新的文献求助10
21秒前
kingwill举报狂飙的蛋求助涉嫌违规
22秒前
Transecond发布了新的文献求助10
22秒前
22秒前
科研通AI2S应助仰卧起坐采纳,获得10
23秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608