Integrating lymph node ratio into personalized radiotherapy for oral cavity squamous cell carcinoma

医学 淋巴结 肿瘤科 放射治疗 阶段(地层学) 端口(电路理论) 癌症 内科学 外科 古生物学 电气工程 生物 工程类
作者
L. Zhang,Enzhao Zhu,Shuxia Cao,Zisheng Ai,Jiansheng Su
出处
期刊:Head & neck [Wiley]
标识
DOI:10.1002/hed.27938
摘要

Abstract Purpose The use of postoperative radiotherapy (PORT) in patients with oral squamous cell carcinoma (OCSCC) lacks clear boundaries due to the non‐negligible toxicity accompanying its remarkable cancer‐killing effect. This study aims at validating the ability of deep learning models to develop individualized PORT recommendations for patients with OCSCC and quantifying the impact of patient characteristics on treatment selection. Methods Participants were categorized into two groups based on alignment between model‐recommended and actual treatment regimens, with their overall survival compared. Inverse probability treatment weighting was used to reduce bias, and a mixed‐effects multivariate linear regression illustrated how baseline characteristics influenced PORT selection. Results 4990 patients with OCSCC met the inclusion criteria. Deep Survival regression with Mixture Effects (DSME) demonstrated the best performance among all the models and National Comprehensive Cancer Network guidelines. The efficacy of PORT is enhanced as the lymph node ratio (LNR) increases. Similar enhancements in efficacy are observed in patients with advanced age, large tumors, multiple positive lymph nodes, tongue involvement, and stage IVA. Early‐stage (stage 0–II) OCSCC may safely omit PORT. Conclusions This is the first study to incorporate LNR as a tumor character to make personalized recommendations for patients. DSME can effectively identify potential beneficiaries of PORT and provide quantifiable survival benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
旺仔先生完成签到,获得积分10
4秒前
邵邵发布了新的文献求助10
5秒前
syangZ完成签到,获得积分10
5秒前
传奇3应助琨琨采纳,获得30
8秒前
disciple完成签到,获得积分10
9秒前
fireking_sid发布了新的文献求助10
9秒前
9秒前
anqi发布了新的文献求助10
10秒前
yyy完成签到,获得积分10
10秒前
10秒前
笑点低的以亦完成签到,获得积分10
12秒前
小立发布了新的文献求助10
13秒前
典雅的静发布了新的文献求助10
13秒前
李健的粉丝团团长应助anqi采纳,获得10
15秒前
16秒前
17秒前
eryuepiaoling发布了新的文献求助30
18秒前
19秒前
20秒前
科研小谢发布了新的文献求助10
21秒前
琨琨发布了新的文献求助30
23秒前
深情安青应助猴子大王666采纳,获得10
25秒前
25秒前
27秒前
29秒前
mylaodao完成签到,获得积分0
31秒前
31秒前
聪明伊完成签到,获得积分10
35秒前
35秒前
38秒前
38秒前
40秒前
乐乐应助邵邵采纳,获得10
41秒前
Timon完成签到,获得积分10
42秒前
zho发布了新的文献求助30
43秒前
淡定海亦发布了新的文献求助10
44秒前
45秒前
46秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367840
关于积分的说明 10447987
捐赠科研通 3087298
什么是DOI,文献DOI怎么找? 1698552
邀请新用户注册赠送积分活动 816826
科研通“疑难数据库(出版商)”最低求助积分说明 769973