Integrating machine and deep learning technologies in green buildings for enhanced energy efficiency and environmental sustainability

计算机科学 机器学习 人工智能 规范化(社会学) 预处理器 可持续设计 深度学习 持续性 分类 过程(计算) 数据预处理 数据挖掘 算法 生态学 人类学 生物 操作系统 社会学
作者
Shahid Mahmood,Huaping Sun,El-Sayed M. El-kenawy,Asifa Iqbal,Amal H. Alharbi,Doaa Sami Khafaga
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-70519-y
摘要

A green building (GB) is a design idea that integrates environmentally conscious technology and sustainable procedures throughout the building's life cycle. However, because different green requirements and performances are integrated into the building design, the GB design procedure typically takes longer than conventional structures. Machine learning (ML) and other advanced artificial intelligence (AI), such as DL techniques, are frequently utilized to assist designers in completing their work more quickly and precisely. Therefore, this study aims to develop a GB design predictive model utilizing ML and DL techniques to optimize resource consumption, improve occupant comfort, and lessen the environmental effect of the built environment of the GB design process. A dataset ASHARE-884 is applied to the suggested models. An Exploratory Data Analysis (EDA) is applied, which involves cleaning, sorting, and converting the category data into numerical values utilizing label encoding. In data preprocessing, the Z-Score normalization technique is applied to normalize the data. After data analysis and preprocessing, preprocessed data is used as input for Machine learning (ML) such as RF, DT, and Extreme GB, and Stacking and Deep Learning (DL) such as GNN, LSTM, and RNN techniques for green building design to enhance environmental sustainability by addressing different criteria of the GB design process. The performance of the proposed models is assessed using different evaluation metrics such as accuracy, precision, recall and F1-score. The experiment results indicate that the proposed GNN and LSTM models function more accurately and efficiently than conventional DL techniques for environmental sustainability in green buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓉蓉发布了新的文献求助10
1秒前
1秒前
xwz发布了新的文献求助10
1秒前
2秒前
月yue发布了新的文献求助10
3秒前
allanqiao发布了新的文献求助10
4秒前
4秒前
KIORking发布了新的文献求助10
7秒前
潮汐发布了新的文献求助10
7秒前
英俊剑鬼完成签到,获得积分10
7秒前
lxrong完成签到,获得积分10
7秒前
小旋风发布了新的文献求助10
8秒前
11秒前
冷酷剑身关注了科研通微信公众号
11秒前
深情安青应助yangbin710采纳,获得10
14秒前
KIORking完成签到,获得积分10
14秒前
小旋风完成签到,获得积分10
15秒前
15秒前
领导范儿应助song采纳,获得10
16秒前
shanmao完成签到 ,获得积分10
16秒前
可爱的函函应助月yue采纳,获得10
16秒前
mint完成签到,获得积分10
17秒前
烟花应助zzrg采纳,获得10
19秒前
20秒前
iNk应助科研混子采纳,获得20
21秒前
深情安青应助潮汐采纳,获得10
22秒前
莫休发布了新的文献求助40
23秒前
fuhe发布了新的文献求助10
25秒前
故酒应助布响氪盐辣采纳,获得20
27秒前
28秒前
28秒前
清脆的夜白完成签到 ,获得积分10
29秒前
xie发布了新的文献求助10
33秒前
魏凡之完成签到,获得积分10
35秒前
35秒前
bkagyin应助haosifan采纳,获得10
35秒前
37秒前
37秒前
38秒前
冰冰完成签到,获得积分20
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810381
求助须知:如何正确求助?哪些是违规求助? 3354913
关于积分的说明 10373163
捐赠科研通 3071434
什么是DOI,文献DOI怎么找? 1686904
邀请新用户注册赠送积分活动 811304
科研通“疑难数据库(出版商)”最低求助积分说明 766591