Deep learning in radiology for lung cancer diagnostics: A systematic review of classification, segmentation, and predictive modeling techniques

计算机科学 肺癌 人工智能 分割 深度学习 机器学习 无线电技术 医学物理学 放射科 模式识别(心理学) 医学 病理
作者
Anirudh Atmakuru,Subrata Chakraborty,Oliver Faust,Massimo Salvi,Prabal Datta Barua,Filippo Molinari,U. Rajendra Acharya,Nusrat Homaira
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124665-124665 被引量:18
标识
DOI:10.1016/j.eswa.2024.124665
摘要

This study presents a comprehensive systematic review focusing on the applications of deep learning techniques in lung cancer radiomics. Through a rigorous screening process of 589 scientific publications following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we selected 153 papers for an in-depth analysis. These papers were categorized based on imaging modality, deep learning model type, and practical applications in lung cancer, such as detection and survival prediction. We specifically emphasized deep learning models and examined their strengths and limitations for each application and imaging modality. Furthermore, we identified potential limitations within the field and proposed future research directions. This study serves as a pioneering resource, being the first comprehensive and systematic review of deep learning techniques, specifically in the context of lung cancer-related applications. Our primary objective was to provide a reference for future research, encouraging the advancement of deep learning techniques in the diagnosis and treatment of lung cancer. By suggesting the most effective deep learning tools for specific application areas, we offer a benchmark for future studies. In summary, this study consolidates and expands existing knowledge on deep learning and radiomics applications in lung cancer. It provides a foundation for further research and serves as a guide for developing and evaluating deep learning models in lung cancer-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇契完成签到,获得积分10
刚刚
科研婷完成签到,获得积分10
1秒前
2秒前
wanci应助腹愁者采纳,获得10
5秒前
manman完成签到,获得积分10
5秒前
cc应助oleskarabach采纳,获得10
6秒前
cc应助oleskarabach采纳,获得10
6秒前
cc应助oleskarabach采纳,获得10
7秒前
7秒前
7秒前
田様应助完美怀亦采纳,获得10
8秒前
8秒前
面汤完成签到,获得积分20
9秒前
YWK发布了新的文献求助10
9秒前
9秒前
禾风完成签到,获得积分10
11秒前
11秒前
12秒前
怡然的怀莲完成签到 ,获得积分20
13秒前
rocket发布了新的文献求助10
14秒前
Akim应助flyxga870825采纳,获得10
15秒前
mix发布了新的文献求助20
17秒前
17秒前
18秒前
Hello应助Hibiscus95采纳,获得10
18秒前
king_creole完成签到,获得积分10
19秒前
21秒前
lagom完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
木子李应助科研通管家采纳,获得10
21秒前
21秒前
ding应助科研通管家采纳,获得10
22秒前
22秒前
一一一应助科研通管家采纳,获得20
22秒前
NNUsusan完成签到,获得积分10
22秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101021
求助须知:如何正确求助?哪些是违规求助? 3638822
关于积分的说明 11531248
捐赠科研通 3347580
什么是DOI,文献DOI怎么找? 1839704
邀请新用户注册赠送积分活动 906964
科研通“疑难数据库(出版商)”最低求助积分说明 824136