“Applications of Multimodal Generative AI in a Real-World Retina Clinic Setting”

生成语法 视网膜 计算机科学 人工智能 医学 验光服务 神经科学 心理学
作者
Seyyedehfatemeh Ghalibafan,David J. Taylor Gonzalez,Louis Cai,Brandon Chou,Sugi Panneerselvam,Spencer C. Barrett,Mak B. Djulbegovic,Nicolas A. Yannuzzi
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Lippincott Williams & Wilkins]
卷期号:44 (10): 1732-1740 被引量:5
标识
DOI:10.1097/iae.0000000000004204
摘要

Purpose: This study evaluates a large language model, Generative Pre-trained Transformer 4 with vision, for diagnosing vitreoretinal diseases in real-world ophthalmology settings. Methods: A retrospective cross-sectional study at Bascom Palmer Eye Clinic, analyzing patient data from January 2010 to March 2023, assesses Generative Pre-trained Transformer 4 with vision's performance on retinal image analysis and International Classification of Diseases 10th revision coding across 2 patient groups: simpler cases (Group A) and complex cases (Group B) requiring more in-depth analysis. Diagnostic accuracy was assessed through open-ended questions and multiple-choice questions independently verified by three retina specialists. Results: In 256 eyes from 143 patients, Generative Pre-trained Transformer 4-V demonstrated a 13.7% accuracy for open-ended questions and 31.3% for multiple-choice questions, with International Classification of Diseases 10th revision code accuracies at 5.5% and 31.3%, respectively. Accurately diagnosed posterior vitreous detachment, nonexudative age-related macular degeneration, and retinal detachment. International Classification of Diseases 10th revision coding was most accurate for nonexudative age-related macular degeneration, central retinal vein occlusion, and macular hole in OEQs, and for posterior vitreous detachment, nonexudative age-related macular degeneration, and retinal detachment in multiple-choice questions. No significant difference in diagnostic or coding accuracy was found in Groups A and B. Conclusion: Generative Pre-trained Transformer 4 with vision has potential in clinical care and record keeping, particularly with standardized questions. Its effectiveness in open-ended scenarios is limited, indicating a significant limitation in providing complex medical advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏淼发布了新的文献求助10
1秒前
快乐难敌发布了新的文献求助10
1秒前
英俊的铭应助许诺采纳,获得10
2秒前
2秒前
胡萝卜完成签到,获得积分10
3秒前
3秒前
5秒前
ing完成签到,获得积分10
5秒前
nakl完成签到,获得积分10
6秒前
温暖的钻石完成签到,获得积分10
7秒前
婉婉完成签到,获得积分10
7秒前
564654SDA完成签到,获得积分10
7秒前
哈哈2022完成签到,获得积分10
8秒前
ing发布了新的文献求助10
9秒前
9秒前
斯文败类应助许诺采纳,获得10
9秒前
wanci应助wwb采纳,获得10
9秒前
10秒前
云淡风轻发布了新的文献求助10
10秒前
fddd完成签到 ,获得积分10
11秒前
零容忍关注了科研通微信公众号
12秒前
在水一方应助灰原哀采纳,获得10
12秒前
lunar发布了新的文献求助10
13秒前
赘婿应助饱满的洋葱采纳,获得10
13秒前
SCI发布了新的文献求助10
13秒前
水菜泽子完成签到,获得积分10
14秒前
日暖月寒完成签到,获得积分10
15秒前
bkagyin应助zc采纳,获得20
16秒前
大模型应助许诺采纳,获得10
17秒前
18秒前
赘婿应助小惊麟采纳,获得10
18秒前
彭于晏应助羲和之梦采纳,获得10
18秒前
田様应助YangRQ采纳,获得10
18秒前
明理的忆之完成签到,获得积分10
21秒前
bkagyin应助青青采纳,获得10
21秒前
22秒前
酸奶椰椰发布了新的文献求助50
22秒前
NexusExplorer应助Vera采纳,获得10
23秒前
重要尔曼发布了新的文献求助10
23秒前
背完单词好睡觉完成签到 ,获得积分10
24秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958