亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Fingerprint and Graph Hybrid Neural Network for Predicting Molecular Properties

机器学习 人工神经网络 计算机科学 人工智能 维数之咒 相关性(法律) 特征选择 图形 多层感知器 感知器 降维 特征(语言学) 数据挖掘 指纹(计算) 利用 模式识别(心理学) 深度学习 特征学习 标记数据 注意力网络 维数(图论) 特征提取 深层神经网络 选择(遗传算法) 支持向量机
作者
Qingtian Zhang,Dangxin Mao,Yusong Tu,Yuanyan Wu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (15): 5853-5866 被引量:10
标识
DOI:10.1021/acs.jcim.4c00586
摘要

Machine learning plays a role in accelerating drug discovery, and the design of effective machine learning models is crucial for accurately predicting molecular properties. Characterizing molecules typically involves the use of molecular fingerprints and molecular graphs. These are input into a multilayer perceptron (MLP) and variants of graph neural networks, such as graph attention networks (GATs). Due to the diverse types and large dimension of fingerprints, models may contain many features that are relatively irrelevant or redundant; meanwhile, although the GAT excels in handling heterogeneous graph tasks, it lacks the ability to extract collaborative information from neighboring nodes, which is crucial in scenarios where it cannot capture the joint influence of adjacent groups on atoms. To overcome these challenges, we introduce a hybrid model, combining improved GAT and MLP. In GAT, the recurrent neural network is employed to capture collaborative information. To address the dimensionality issue, we propose a feature selection algorithm, which is based on the principle of maximizing relevance while minimizing redundancy. Through experiments on 13 public data sets and 14 breast cell lines, our model demonstrates superior performance compared to state-of-the-art deep learning and traditional machine learning algorithms. Additionally, a series of ablation experiments were conducted to demonstrate the advantages of our improved version, as well as its antinoise capability and interpretability. These results indicate that our model holds promising prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nannan完成签到 ,获得积分10
9秒前
MiaMia应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
MiaMia应助科研通管家采纳,获得10
51秒前
53秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
甜心椰奶莓莓完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
王思蒙完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
MiaMia应助科研通管家采纳,获得10
2分钟前
小火种儿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
淡定自中发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
helloragdoll发布了新的文献求助10
5分钟前
5分钟前
helloragdoll完成签到,获得积分10
5分钟前
无聊的老姆完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
MiaMia应助科研通管家采纳,获得10
6分钟前
MiaMia应助科研通管家采纳,获得10
6分钟前
6分钟前
Ccccn完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450949