Artificial Intelligence Hybrid Survival Assessment System for Robot-Assisted Proctectomy: A Retrospective Cohort Study

可解释性 医学 队列 人工智能 机器学习 重采样 回顾性队列研究 计算机科学 医学物理学 外科 内科学
作者
Shiqian Zhang,Ge Zhang,Ming Wang,Song‐Bin Guo,Fuqi Wang,Yun Li,Kaisaierjiang Kadier,Zhaokai Zhou,Pengpeng Zhang,Hao Ran,Chuchu Zhang,Quanbo Zhou,Pin Lyu,Shuang Zhao,Jing Wang,Weitang Yuan
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8) 被引量:2
标识
DOI:10.1200/po.24.00089
摘要

PURPOSE Robotic-assisted proctectomy (RAP) has emerged as the predominant surgical approach for patients with rectal cancer in recent years; although good postoperative patient recovery with accurate prediction is a guarantee of adaptive surveillance management, there is still a lack of easy-to-use prognostic tools and risk scores designed specifically for those patients undergoing RAP. METHODS This study used the electronic health records of 506 RAP participants, including a National Specialist Center for da Vinci Robotic Colorectal Surgery (NSCVRCS) meta cohort, and an independent external validation Sun Yat-sen Memorial Hospital cohort. In the NSCVRCS meta cohort, patients were divided into a discovery cohort (70%, n = 268), where the best-fit model was applied to model our prediction system, RAP-AIscore. Subsequently, an internal validation process for RAP-AIscore was conducted using a replication cohort (30%, n = 116). The study designed and implemented a large-scale artificial intelligence (AI) hybrid framework to identify the best strategy for building a survival assessment system, the RAP-AIscore, from 132 potential modeling scenarios through a combination of iterative cross-validation, Monte Carlo cross-validation, and bootstrap resampling. The 10 variables most relevant to clinical interpretability were identified on the basis of the AI hybrid optimal model values, which helps provide reliable prognostic survival guidance for new patients. RESULTS The consistent evaluation of discrimination, calibration, generalization, and prognostic value across cohorts reaffirmed the accuracy and robust extrapolation capability of this system. The 10 feature variables most associated with clinical interpretability on the basis of Shapley values were identified, facilitating reliable prognostic survival guidance for new patients. CONCLUSION This study introduces a promising and informative tool, the RAP-AIscore, which can be explained through nomograms for interpreting clinical outcomes. It facilitates postoperative risk stratification management and enhances clinical management of prognosis for RAP patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
psm完成签到 ,获得积分10
4秒前
gs发布了新的文献求助10
5秒前
阿邱发布了新的文献求助10
7秒前
9秒前
星辰大海应助yjy采纳,获得10
9秒前
共享精神应助gs采纳,获得10
11秒前
大侦探皮卡丘完成签到,获得积分10
12秒前
大连最后的矜持完成签到,获得积分10
13秒前
严逍遥完成签到 ,获得积分10
13秒前
14秒前
千空发布了新的文献求助10
15秒前
21秒前
ele_yuki完成签到,获得积分10
23秒前
24秒前
阮大帅气完成签到,获得积分10
24秒前
君寻完成签到 ,获得积分10
26秒前
28秒前
我是老大应助hanruiLi采纳,获得30
34秒前
34秒前
子凡应助负责的妙松采纳,获得10
34秒前
36秒前
36秒前
YSY发布了新的文献求助10
37秒前
Orange应助逃亡的小狗采纳,获得10
37秒前
mirrovo完成签到 ,获得积分10
39秒前
wankai发布了新的文献求助10
40秒前
47秒前
Cloud完成签到,获得积分10
49秒前
50秒前
Cloud发布了新的文献求助30
52秒前
kmzzy发布了新的文献求助10
55秒前
B1n发布了新的文献求助20
56秒前
56秒前
乐乐应助负责的妙松采纳,获得10
56秒前
57秒前
59秒前
豆浆烩面发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324256
关于积分的说明 10217657
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798513
科研通“疑难数据库(出版商)”最低求助积分说明 758401