医学
竞赛
冲程(发动机)
内容(测量理论)
人工智能
政治学
法学
机械工程
数学分析
数学
计算机科学
工程类
作者
Gisele Sampaio Silva,Rohan Khera,Lee H. Schwamm,Maurizio Acampa,Eric E. Adelman,Johannes Boltze,Joseph P. Broderick,Amy Brodtmann,Hanne Christensen,Lachlan L. Dalli,Kelsey Rose Duncan,Islam Y. Elgendy,Adviye Ergul,Larry B. Goldstein,Janice L. Hinkle,Michelle C. Johansen,Katarina Jood,Scott E. Kasner,Steven R. Levine,Zixiao Li
出处
期刊:Stroke
[Lippincott Williams & Wilkins]
日期:2024-09-03
卷期号:55 (10): 2573-2578
被引量:2
标识
DOI:10.1161/strokeaha.124.045012
摘要
Artificial intelligence (AI) large language models (LLMs) now produce human-like general text and images. LLMs' ability to generate persuasive scientific essays that undergo evaluation under traditional peer review has not been systematically studied. To measure perceptions of quality and the nature of authorship, we conducted a competitive essay contest in 2024 with both human and AI participants. Human authors and 4 distinct LLMs generated essays on controversial topics in stroke care and outcomes research. A panel of
科研通智能强力驱动
Strongly Powered by AbleSci AI