算法
洛伦兹系统
操作员(生物学)
二次方程
系统标识
还原(数学)
航程(航空)
双曲函数
功能(生物学)
动力系统理论
系列(地层学)
计算机科学
应用数学
数学
数据建模
人工智能
数学分析
混乱的
几何学
材料科学
抑制因子
数据库
化学
复合材料
生物
古生物学
生物化学
量子力学
进化生物学
转录因子
物理
基因
作者
Gülnur Yılmaz,Osman Alparslan Soysal,Enis Günay
出处
期刊:Chaos
[American Institute of Physics]
日期:2024-08-01
卷期号:34 (8)
被引量:1
摘要
This paper introduces a novel data-driven approximation method for the Koopman operator, called the RC-HAVOK algorithm. The RC-HAVOK algorithm combines Reservoir Computing (RC) and the Hankel Alternative View of Koopman (HAVOK) to reduce the size of the linear Koopman operator with a lower error rate. The accuracy and feasibility of the RC-HAVOK algorithm are assessed on Lorenz-like systems and dynamical systems with various nonlinearities, including the quadratic and cubic nonlinearities, hyperbolic tangent function, and piece-wise linear function. Implementation results reveal that the proposed model outperforms a range of other data-driven model identification algorithms, particularly when applied to commonly used Lorenz time series data.
科研通智能强力驱动
Strongly Powered by AbleSci AI