Exploration of microRNA biomarker panel as a predictor of evolution of pancreatitis to pancreatic ductal adenocarcinoma.

胰腺导管腺癌 医学 生物标志物 小RNA 胰腺炎 胰腺癌 内科学 腺癌 肿瘤科 癌症研究 病理 癌症 基因 生物 遗传学
作者
Mira Nuthakki
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): e16343-e16343
标识
DOI:10.1200/jco.2024.42.16_suppl.e16343
摘要

e16343 Background: PDAC (pancreatic ductal adenocarcinoma) is 3rd most common cause of cancer deaths, and is projected to become the 2nd leading cause of cancer death by 2030 even as it comprises only 3.2% of all cancer cases. The most important predictor of survival is resection of early stage cancer. Currently, screening for early detection of PDAC via annual MRI or endoscopic ultrasound (EUS) is recommended only in the 10% of total cases, that have hereditary/ genetic associations. PDAC risk is doubled even 5 years after acute pancreatitis and is 15-16 fold for chronic pancreatitis. Biomarkers such as CA19-9, peptide panels, tumor-associated autoantibodies and microRNAs have been studied for early diagnosis of PDAC. However, biomarkers that can predict risk of PDAC following pancreatitis have not been well studied. This study aims to identify, compare, and extract a differentially expressed microRNA (DEM) panel in serum, that could predict risk of progression to PDAC from pancreatitis. Methods: Two microarray Genomic Spatial Event (GSE) datasets containing pancreatitis (n = 75), PDAC (90), and control samples (164) were used to extract DEM (n = 22), common to both pancreatitis and PDAC. 8 smaller subgroups of DEM (for cost benefit) were derived from bioinformatics methods such as ROC/AUC of expression values, up and downregulated clustering, correlation analysis, miRNA interaction networks, target gene prediction tools, target gene interaction and functional enrichment analysis for all target genes and top modules, as well as decision tree/cross-validated random forest machine learning models. Results: The DEM main group (n = 22) and the smaller subgroups were trained on the original datasets, and were used to predict the risk of pancreatic cancer vs control in a validation set consisting of six other GSE datasets. The main 22miRNA panel had the highest accuracy (0.928), F1(0.976), precision and recall, followed by subgroup 6 (accuracy 0.910, F1 0.968) derived from the target hub genes with the highest interaction (hsa-miR-28-3p, 320b, 320c, 320d, 532-5p, and 423-5p). The associated main pathways were ubi-conjugation and ubiquitin pathway, mRNA splicing/processing/binding, and endocytosis. Conclusions: A new serum 22 microRNA biomarker panel predicting evolution of pancreatitis to pancreatic ductal adenocarcinoma, and it’s associated pathways, has been identified, that also performed very well in distinguishing pancreatic cancer (with or without pancreatitis risk factor) from control. A smaller subpanel of 6 microRNA may have a cost benefit. Further studies with larger samples, specifically differentiating PDAC vs all pancreatic cancer, and acute vs chronic pancreatitis among the samples are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助嗯嗯采纳,获得30
刚刚
廿三应助嘚嘚采纳,获得10
1秒前
1秒前
Alluring发布了新的文献求助10
1秒前
3秒前
3秒前
4秒前
Cindy发布了新的文献求助10
4秒前
5秒前
五五完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
阳光的凡阳完成签到 ,获得积分10
6秒前
小猪等天晴完成签到 ,获得积分10
8秒前
xy发布了新的文献求助10
8秒前
9秒前
9秒前
金www发布了新的文献求助10
10秒前
10秒前
新小pi发布了新的文献求助10
11秒前
孤独的书雁完成签到,获得积分10
11秒前
12秒前
lalala完成签到,获得积分10
12秒前
今后应助侯卜文采纳,获得10
13秒前
14秒前
yir发布了新的文献求助10
14秒前
健壮的盛开完成签到,获得积分10
16秒前
风儿的声音完成签到,获得积分10
16秒前
失眠采白完成签到,获得积分10
17秒前
新小pi完成签到,获得积分10
17秒前
17秒前
18秒前
成懂事长发布了新的文献求助10
21秒前
小马甲应助轻松的冬云采纳,获得10
22秒前
欣喜亚男发布了新的文献求助10
22秒前
缓慢的半莲完成签到 ,获得积分10
23秒前
俊逸的绿竹完成签到,获得积分10
23秒前
袁思铎发布了新的文献求助10
24秒前
fengquan完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920224
求助须知:如何正确求助?哪些是违规求助? 4191872
关于积分的说明 13019652
捐赠科研通 3962608
什么是DOI,文献DOI怎么找? 2172148
邀请新用户注册赠送积分活动 1190024
关于科研通互助平台的介绍 1098834