亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

External Validation of a Previously Developed Deep Learning–based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans

计算机科学 人工智能 算法 病变 前列腺 核医学 医学 病理 癌症 内科学
作者
Enis C. Yılmaz,Stephanie A. Harmon,Yan Mee Law,Erich P. Huang,Mason J. Belue,Yue Lin,David G. Gelikman,Kutsev B Özyörük,Dong Yang,Ziyue Xu,Jesse Tetreault,Daguang Xu,Lindsey Hazen,Charisse Garcia,Nathan Lay,Philip Eclarinal,Antoun Toubaji,Maria J. Merino,Bradford J. Wood,Sandeep Gurram
出处
期刊:Radiology 卷期号:6 (6): e240050-e240050 被引量:6
标识
DOI:10.1148/rycan.240050
摘要

Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL2 [IQR, 0.10-0.22 ng/mL2]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans (P < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans (P < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; P = .005), larger lesion diameter (OR = 3.96; P < .001), better diffusion-weighted MRI quality (OR = 1.53; P = .02), and fewer lesions at MRI (OR = 0.78; P = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; P = .03) and larger lesion size (OR = 10.19; P < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. Keywords: MR Imaging, Urinary, Prostate Supplemental material is available for this article. © RSNA, 2024.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
18秒前
yhh完成签到 ,获得积分10
22秒前
Criminology34应助科研通管家采纳,获得10
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
天天快乐应助科研通管家采纳,获得20
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
lsl应助科研通管家采纳,获得10
36秒前
lsl应助科研通管家采纳,获得10
36秒前
聪慧芷巧完成签到,获得积分10
55秒前
111关注了科研通微信公众号
1分钟前
1分钟前
十二发布了新的文献求助10
1分钟前
重要板凳完成签到 ,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
Ava应助十二采纳,获得10
1分钟前
meow完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
佳佳发布了新的文献求助10
3分钟前
鳗鱼忆山完成签到 ,获得积分10
3分钟前
佳佳完成签到,获得积分20
3分钟前
3分钟前
无无完成签到 ,获得积分10
4分钟前
4分钟前
小A同学发布了新的文献求助10
4分钟前
小A同学完成签到,获得积分10
4分钟前
汉堡包应助aydidar采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
4分钟前
HC发布了新的文献求助10
4分钟前
aydidar发布了新的文献求助10
4分钟前
4分钟前
ding应助HC采纳,获得30
4分钟前
领导范儿应助Ruby采纳,获得10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004