A research landscape on software defect prediction

计算机科学 过度拟合 领域(数学分析) 过程(计算) 数据科学 质量(理念) 机器学习 软件 系统回顾 复制(统计) 协议(科学) 数据挖掘 人工智能 软件工程 梅德林 医学 替代医学 法学 程序设计语言 数学分析 病毒学 病理 哲学 操作系统 认识论 人工神经网络 数学 政治学
作者
Anam Taskeen,Saif Ur Rehman Khan,Ebubeogu Amarachukwu Felix
出处
期刊:Journal of software [Wiley]
卷期号:35 (12)
标识
DOI:10.1002/smr.2549
摘要

Abstract Software defect prediction is the process of identifying defective files and modules that need rigorous testing. In the literature, several secondary studies including systematic reviews, mapping studies, and review studies have been reported. However, no research work such as a tertiary study that combines secondary studies has focused on providing a landscape of software defect prediction useful to understand the body of knowledge. Motivated by this, we intend to perform a tertiary study by following a systematic literature review protocol to provide a research landscape of the targeted domain. We synthesize the quality of the secondary studies and investigate the employed techniques and the performance evaluation measures for evaluating the software defect prediction model. Furthermore, this study aims at exploring different datasets employed in the reported experimentation. Moreover, the current study intends at highlighting the research trends, gaps, and opportunities in the targeted research domain. The results indicate that none of the reported defect prediction techniques can be regarded as the best; however, the reported techniques performed better in different testing situations. In addition, machine learning (ML)‐based techniques perform better than traditional statistical techniques mainly due to the potential of discovering the defects and generating generalized results. Moreover, the obtained results highlight the need for further work in the domain of ML‐based techniques. Furthermore, publicly available datasets should be considered for experimentation or replication purposes. The potential future work can focus on data quality, ethical ML, cross‐project defect prediction, early defect prediction process, class imbalance problem, and model overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crina发布了新的文献求助10
1秒前
失眠星星发布了新的文献求助10
1秒前
倪牛牛牛完成签到,获得积分10
1秒前
efkwiefh完成签到,获得积分10
1秒前
思源应助45321采纳,获得10
1秒前
1秒前
大宝贝爱学习完成签到 ,获得积分10
2秒前
chuzhong12完成签到,获得积分10
2秒前
3秒前
3秒前
若水发布了新的文献求助10
3秒前
YWang完成签到,获得积分10
3秒前
OliverW完成签到,获得积分10
3秒前
隐形曼青应助亚黑采纳,获得10
3秒前
QLLW完成签到,获得积分10
4秒前
大力的贞完成签到,获得积分10
4秒前
why完成签到,获得积分10
4秒前
4秒前
4秒前
qyhl完成签到,获得积分10
4秒前
111111完成签到,获得积分10
4秒前
zhang完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
5秒前
duolaAmeng完成签到,获得积分10
6秒前
6秒前
徐丹枫完成签到 ,获得积分10
6秒前
6秒前
jaslek完成签到,获得积分10
8秒前
小海应助勤劳小海豚采纳,获得10
8秒前
炙热孤容完成签到 ,获得积分10
8秒前
starr发布了新的文献求助10
8秒前
共享精神应助mint采纳,获得10
8秒前
慕青应助小丸子采纳,获得10
8秒前
坚定莫茗完成签到,获得积分10
9秒前
失眠星星完成签到,获得积分10
10秒前
Pauline完成签到 ,获得积分10
10秒前
狼主完成签到 ,获得积分10
10秒前
chuzhong12发布了新的文献求助10
10秒前
落忆完成签到 ,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785057
求助须知:如何正确求助?哪些是违规求助? 3330436
关于积分的说明 10246107
捐赠科研通 3045806
什么是DOI,文献DOI怎么找? 1671735
邀请新用户注册赠送积分活动 800750
科研通“疑难数据库(出版商)”最低求助积分说明 759644