A deep learning model for predicting the outcome of persistent type 2 endoleaks after endovascular abdominal aortic aneurysm repair

医学 腹主动脉瘤 外科 腹部外科 动脉瘤 放射科 腔内修复术
作者
Yonggang Wang,Min Zhou,Yong Ding,Xu Li,Zhenyu Zhou,Zhenyu Shi,Weiguo Fu
出处
期刊:Acta Chirurgica Belgica [Taylor & Francis]
卷期号:: 1-9 被引量:1
标识
DOI:10.1080/00015458.2022.2129282
摘要

Persistent type 2 endoleaks (pT2ELs) require long-term follow-up to prevent life-threatening complications. This study aimed to create a model to predict the outcome of pT2ELs after endovascular abdominal aortic aneurysm repair (EVAR) using deep learning (DL). We retrospectively reviewed 94 patients with pT2ELs treated between January 2010 and December 2019 at Zhongshan Hospital Fudan University. The median follow-up was 38.2 months, and 21 patients (22.3%) had pT2ELs-related severe adverse events (SAEs). ITK-SNAP software was used to draw the region of interest (ROI). Pre-processing of the images and creation of the DL model were performed using MATLAB. Of the total, 80% of the patients were randomly classified as the training set and 20% as the test set. The area under the curve (AUC) was used to evaluate the predictive power of the model. Visualisation techniques were used to better understand the DL model-prediction process. The number of patients in the training set was 75 (including 17 with SAEs) and the number of patients in the test set was 19 (including 4 with SAEs). By training 10240 computed tomography angiography images (n = 75), the DL model achieved encouraging predictive performance in the test set with an AUC of 0.917, accuracy of 0.842, and F1 score of 0.897. Visualisation techniques improved the interpretability of the model. An end-to-end DL model can be used as an additional tool to predict the outcomes of pT2ELs after EVAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
re发布了新的文献求助10
2秒前
3秒前
123完成签到,获得积分10
4秒前
闪电侠发布了新的文献求助10
6秒前
CC发布了新的文献求助10
6秒前
丸子完成签到,获得积分10
7秒前
re完成签到,获得积分10
16秒前
16秒前
CC完成签到,获得积分10
16秒前
黑眼圈完成签到 ,获得积分10
19秒前
19秒前
ding应助奋斗瑶采纳,获得10
20秒前
21秒前
25秒前
LLLLLL发布了新的文献求助10
25秒前
27秒前
酷波er应助qwewyq12307采纳,获得10
27秒前
852应助Umar采纳,获得10
27秒前
浮游应助SAINT采纳,获得10
28秒前
28秒前
chao发布了新的文献求助10
28秒前
30秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
干饭pro发布了新的文献求助10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
31秒前
Orange应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得10
32秒前
慕青应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
英姑应助科研通管家采纳,获得10
32秒前
32秒前
天下完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4792746
求助须知:如何正确求助?哪些是违规求助? 4115187
关于积分的说明 12730719
捐赠科研通 3843112
什么是DOI,文献DOI怎么找? 2118401
邀请新用户注册赠送积分活动 1140580
关于科研通互助平台的介绍 1028876