亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of two prediction models in a clinical setting to predict growth in prepubertal children on recombinant growth hormone

医学 儿科 队列 生长激素缺乏 增长模型 生长激素治疗 生长激素 内科学 数学 激素 数理经济学
作者
Helena‐Jamin Ly,Anders Lindberg,Hans Fors,Jovanna Dahlgren
出处
期刊:Growth hormone & IGF research [Elsevier BV]
卷期号:68: 101523-101523 被引量:1
标识
DOI:10.1016/j.ghir.2023.101523
摘要

Prediction models that calculate the growth response in children on recombinant growth hormone (GH) have shown to be helpful tools in deciding who should start treatment, as identifying GH deficiency can be a challenge. The aim of the study is to compare two prediction models; the KIGS (Pfizer International Growth Study) prediction models which are more accessible and the Gothenburg model which has previously been clinically validated.All prepubertal patients who commenced GH treatment at Queen Silvia Children's Hospital in Gothenburg during a 13-year-period were candidates for the study. Children were excluded if suspected syndrome, malignant disease, chronic disease, or poor adherence to treatment were found. The KIGS model and the Gothenburg model were used to make predictions. Data was obtained from medical charts for the period from birth to the end of the first year of treatment. The predicted height outcome was compared against observed.The study included 123 prepubertal children (76 males). The average age at treatment start and standard deviation (SD) was 5.7 (1.8) years. Correlation analyses were performed between predicted growth by both the Gothenburg and KIGS models versus the first year observed growth response showing strong correlations of r = 0.990 and r = 0.991 respectively with studentized residuals of 0.10 (0.81) for the Gothenburg model and 0.03 (0.96) for the KIGS model.We found that both the Gothenburg model and the KIGS model are equivalent when applying to our clinical cohort. Both models are very precise, hence it is encouraged to use either based on accessibility for the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
打打应助小陈要发SCI采纳,获得10
12秒前
科研通AI5应助读书的时候采纳,获得10
18秒前
24秒前
28秒前
Akim应助读书的时候采纳,获得10
42秒前
43秒前
43秒前
Michael完成签到 ,获得积分10
45秒前
xfcy发布了新的文献求助10
48秒前
50秒前
科研通AI5应助读书的时候采纳,获得10
1分钟前
1分钟前
xfcy完成签到,获得积分10
1分钟前
李健应助读书的时候采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
脑洞疼应助Rylynn采纳,获得10
1分钟前
可可完成签到 ,获得积分10
1分钟前
FashionBoy应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
wang发布了新的文献求助30
1分钟前
顺心奇玉发布了新的文献求助10
1分钟前
美满雨莲完成签到,获得积分10
2分钟前
英俊的铭应助读书的时候采纳,获得10
2分钟前
2分钟前
深情安青应助顺心奇玉采纳,获得10
2分钟前
2分钟前
fdwang完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
田様应助读书的时候采纳,获得10
2分钟前
kukudou2发布了新的文献求助10
2分钟前
蹲坑的撕裂者完成签到,获得积分10
2分钟前
呵呵贺哈完成签到 ,获得积分10
2分钟前
klpkyx发布了新的文献求助10
2分钟前
王木木完成签到 ,获得积分10
2分钟前
lovelife完成签到,获得积分10
2分钟前
klpkyx完成签到,获得积分10
3分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935365
求助须知:如何正确求助?哪些是违规求助? 4202793
关于积分的说明 13058818
捐赠科研通 3977681
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107320